Research Papers

Modeling the Abrupt Buckling Transition in dsDNA During Supercoiling

[+] Author and Article Information
Ikenna D. Ivenso

Department of Mechanical Engineering,
Texas Tech University,
Lubbock, TX 79409
e-mail: ikenna.ivenso@ttu.edu

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received September 30, 2015; final manuscript received May 16, 2016; published online June 22, 2016. Assoc. Editor: Firdaus Udwadia.

J. Comput. Nonlinear Dynam 11(6), 061003 (Jun 22, 2016) (7 pages) Paper No: CND-15-1308; doi: 10.1115/1.4033308 History: Received September 30, 2015; Revised May 16, 2016

When deoxyribonucleic (DNA), held at a fixed tension, is subjected to torsional deformations, it responds by forming plectonemic supercoils accompanied by a reduction in its end-to-end extension. This transition from the extended state to the supercoiled state is marked by an abrupt buckling of the DNA accompanied by a rapid “hopping” of the DNA between the extended and supercoiled states. This transition is studied by means of Brownian dynamics simulations using a discrete wormlike-chain (dWLC) model of DNA. The simulations reveal, among other things, the distinct regimes that occur during DNA supercoiling and the probabilities of states within the buckling transition regime.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Marko, J. , and Siggia, E. , 1995, “ Statistical Mechanics of Supercoiled DNA,” Phys. Rev. E, 52(3), pp. 2912–2938. [CrossRef]
Jian, H. , Schlick, T. , and Vologodskii, A. , 1998, “ Internal Motion of Supercoiled DNA: Brownian Dynamics Simulations of Site Juxtaposition,” J. Mol. Biol., 284(2), pp. 287–296. [CrossRef] [PubMed]
Huang, J. , Schlick, T. , and Vologodskii, A. , 2001, “ Dynamics of Site Juxtaposition in Supercoiled DNA,” Proc. Natl. Acad. Sci. U.S.A., 98(3), pp. 968–973. [CrossRef] [PubMed]
Merlitz, H. , Rippe, K. , Klenin, K. V. , and Langowski, J. , 1998, “ Looping Dynamics of Linear DNA Molecules and the Effect of DNA Curvature: A Study by Brownian Dynamics Simulation,” Biophys. J., 74(2 Pt. 1), pp. 773–779. [CrossRef] [PubMed]
Afra, R. , and Todd, B. A. , 2013, “ Kinetics of Loop Formation in Worm-Like Chain Polymers,” J. Chem. Phys., 138(17), p. 174908. [CrossRef] [PubMed]
Travers, A. , and Muskhelishvili, G. , 2007, “ A Common Topology for Bacterial and Eukaryotic Transcription Initiation?” EMBO Rep., 8(2), pp. 147–151. [CrossRef] [PubMed]
Zechiedrich, E. L. , Khodursky, A. B. , Bachellier, S. , Schneider, R. , Chen, D. , Lilley, D. M. , and Cozzarelli, N. R. , 2000, “ Roles of Topoisomerases in Maintaining Steady-State DNA Supercoiling in Escherichia coli,” J. Biol. Chem., 275(11), pp. 8103–8113. [CrossRef] [PubMed]
Samul, R. , and Leng, F. , 2007, “ Transcription-Coupled Hypernegative Supercoiling of Plasmid DNA by T7 RNA Polymerase in Escherichia coli Topoisomerase I-Deficient Strains,” J. Mol. Biol., 374(4), pp. 925–935. [CrossRef] [PubMed]
Ma, J. , and Wang, M. , 2014, “ Interplay Between DNA Supercoiling and Transcription Elongation,” Transcription, 5(3), pp. 1–4. [CrossRef]
Forth, S. , Deufel, C. , Sheinin, M. , Daniels, B. , Sethna, J. , and Wang, M. , 2008, “ Abrupt Buckling Transition Observed During the Plectoneme Formation of Individual DNA Molecules,” Phys. Rev. Lett., 100(14), p. 148301. [CrossRef] [PubMed]
Brutzer, H. , Luzzietti, N. , Klaue, D. , and Seidel, R. , 2010, “ Energetics at the DNA Supercoiling Transition,” Biophys. J., 98(7), pp. 1267–1276. [CrossRef] [PubMed]
Marko, J. F. , and Neukirch, S. , 2012, “ Competition Between Curls and Plectonemes Near the Buckling Transition of Stretched Supercoiled DNA,” Phys. Rev. E, 85(1), p. 011908. [CrossRef]
Baranello, L. , Levens, D. , Gupta, A. , and Kouzine, F. , 2012, “ The Importance of Being Supercoiled: How DNA Mechanics Regulate Dynamic Processes,” Biochim. Biophys. Acta, 1819(7), pp. 632–638. [CrossRef] [PubMed]
Corbett, K. D. , and Berger, J. M. , 2004, “ Structure, Molecular Mechanisms, and Evolutionary Relationships in DNA Topoisomerases,” Annu. Rev. Biophys. Biomol. Struct, 33(1), pp. 95–118. [CrossRef] [PubMed]
Moroz, J. D. , and Nelson, P. , 1997, “ Torsional Directed Walks, Entropic Elasticity, and DNA Twist Stiffness,” Proc. Natl. Acad. Sci. U.S.A., 94(26), pp. 14418–14422. [CrossRef] [PubMed]
Moroz, J. , and Nelson, P. , 1998, “ Entropic Elasticity of Twist-Storing Polymers,” Macromolecules, 31(18), pp. 6333–6347. [CrossRef]
Seol, Y. , Zhang, H. , Pommier, Y. , and Neuman, K. C. , 2012, “ A Kinetic Clutch Governs Religation by Type IB Topoisomerases and Determines Camptothecin Sensitivity,” Proc. Natl. Acad. Sci. U.S.A., 109(40), pp. 16125–16130. [CrossRef] [PubMed]
Strick, T. , Allemand, J. , Croquette, V. , and Bensimon, D. , 2000, “ Twisting and Stretching Single DNA Molecules,” Prog. Biophys. Mol. Biol., 74(1–2), pp. 115–140. [CrossRef] [PubMed]
Koster, D. A. , Czerwinski, F. , Halby, L. , Crut, A. , Vekhoff, P. , Palle, K. , Arimondo, P. B. , and Dekker, N. H. , 2008, “ Single-Molecule Observations of Topotecan-Mediated TopIB Activity at a Unique DNA Sequence,” Nucl. Acids Res., 36(7), pp. 2301–2310. [CrossRef]
Goshen, E. , Zhao, W. , Carmon, G. , Rosen, S. , Granek, R. , and Feingold, M. , 2005, “ Relaxation Dynamics of a Single DNA Molecule,” Phys. Rev. E, 71(6), p. 061920. [CrossRef]
Zlatanova, J. , McAllister, W. T. , Borukhov, S. , and Leuba, S. H. , 2006, “ Single-Molecule Approaches Reveal the Idiosyncrasies of RNA Polymerases,” Structure, 14(6), pp. 953–966. [CrossRef] [PubMed]
Crut, A. , Koster, D. A. , Seidel, R. , Wiggins, C. H. , and Dekker, N. H. , 2007, “ Fast Dynamics of Supercoiled DNA Revealed by Single-Molecule Experiments,” Proc. Natl. Acad. Sci. U.S.A., 104(29), pp. 11957–11962. [CrossRef] [PubMed]
Koster, D. A. , Crut, A. , Shuman, S. , Bjornsti, M.-A. , and Dekker, N. H. , 2010, “ Cellular Strategies for Regulating DNA Supercoiling: A Single-Molecule Perspective,” Cell, 142(4), pp. 519–530. [CrossRef] [PubMed]
Daniels, B. , Forth, S. , Sheinin, M. , Wang, M. , and Sethna, J. , 2009, “ Discontinuities at the DNA Supercoiling Transition,” Phys. Rev. E, 80(4), p. 040901. [CrossRef]
Vilfan, I. D. , Lipfert, J. , Koster, D. A. , Lemay, S. G. , and Dekker, N. H. , 2009, “ Magnetic Tweezers for Single-Molecule Experiments,” Handbook of Single-Molecule Biophysics, Springer-Verlag, New York, Chap. 13, pp. 371–396.
van Loenhout, M. T. J. , de Grunt, M. V. , and Dekker, C. , 2012, “ Dynamics of DNA Supercoils,” Science, 338(6103), pp. 94–97. [CrossRef] [PubMed]
Ivenso, I. D. , and Lillian, T. D. , 2014, “ Brownian Dynamics Simulation of the Dynamics of Stretched DNA,” ASME Paper No. DETC2014-35487.
Ivenso, I. D. , and Lillian, T. D. , 2015, “ The Dynamics of DNA Supercoiling: A Brownian Dynamics Study,” ASME Paper No. DETC2015-47444.
Klenin, K. , Merlitz, H. , and Langowski, J. , 1998, “ A Brownian Dynamics Program for the Simulation of Linear and Circular DNA and Other Wormlike Chain Polyelectrolytes,” Biophys. J., 74(2 Pt. 1), pp. 780–788. [CrossRef] [PubMed]
Chirico, G. , and Langowski, J. , 1996, “ Brownian Dynamics Simulations of Supercoiled DNA With Bent Sequences,” Biophys. J., 71(2), pp. 955–971. [CrossRef] [PubMed]
Chirico, G. , and Langowski, J. , 1994, “ Kinetics of DNA Supercoiling Studied by Brownian Dynamics Simulation,” Biopolymers, 34(3), pp. 415–433. [CrossRef]
Allison, S. , 1986, “ Brownian Dynamics Simulation of Wormlike Chains. Fluorescence Depolarization and Depolarized Light Scattering,” Macromolecules, 19(1), pp. 118–124. [CrossRef]
Vologodskii, A. , 2007, “ Monte Carlo Simulation of DNA Topological Properties,” Topology in Molecular Biology, New York University, New York, pp. 23–41.
Charvin, G. , Vologodskii, A. , Bensimon, D. , and Croquette, V. , 2005, “ Braiding DNA: Experiments, Simulations, and Models,” Biophys. J., 88(6), pp. 4124–4136. [CrossRef] [PubMed]
Klenin, K. V. , Vologodskii, A. V. , Anshelevich, V. V. , Dykhne, A. M. , and Frank-Kamenetskii, M. D. , 1991, “ Computer Simulation of DNA Supercoiling,” J. Mol. Biol., 217(3), pp. 413–419. [CrossRef] [PubMed]
Vologodskii, A. , 2006, “ Brownian Dynamics Simulation of Knot Diffusion Along a Stretched DNA Molecule,” Biophys. J., 90(5), pp. 1594–1597. [CrossRef] [PubMed]
Vologodskii, A. , 2009, “ Determining Protein-Induced DNA Bending in Force-Extension Experiments: Theoretical Analysis,” Biophys. J., 96(9), pp. 3591–3599. [CrossRef] [PubMed]
Vologodskii, A. , 2006, “ Simulation of Equilibrium and Dynamic Properties of Large DNA Molecules,” Computational Studies of RNA and DNA, Springer, Dordrecht, The Netherlands, pp. 579–604.
Jian, H. , Vologodskii, A. V. , and Schlick, T. , 1997, “ A Combined Wormlike-Chain and Bead Model for Dynamic Simulations of Long Linear DNA,” J. Comput. Phys., 136(1), pp. 168–179. [CrossRef]
Vologodskii, A. , and Cozzarelli, N. , 1995, “ Modeling of Long-Range Electrostatic Interactions in DNA,” Biopolymers, 35(3), pp. 289–296. [CrossRef] [PubMed]
Mielke, S. P. , Fink, W. H. , Krishnan, V. V. , Grønbech Jensen, N. , and Benham, C. J. , 2004, “ Transcription-Driven Twin Supercoiling of a DNA Loop: A Brownian Dynamics Study,” J. Chem. Phys., 121(16), pp. 8104–8112. [CrossRef] [PubMed]
Rotne, J. , and Prager, S. , 1969, “ Variational Treatment of Hydrodynamic Interaction in Polymers,” J. Chem. Phys., 50(11), pp. 4831–4837. [CrossRef]
Wajnryb, E. , Mizerski, K. A. , Zuk, P. J. , and Szymczak, P. , 2013, “ Generalization of the Rotne–Prager–Yamakawa Mobility and Shear Disturbance Tensors,” J. Fluid Mech., 731, p. R3(1–12). [CrossRef]
Iniesta, A. , and de la Torre, J. , 1990, “ A Second-Order Algorithm for the Simulation of the Brownian Dynamics of Macromolecular Models,” J. Chem. Phys., 92(3), pp. 2015–2018. [CrossRef]
Ermak, D. L. , and McCammon, J. A. , 1978, “ Brownian Dynamics With Hydrodynamic Interactions,” J. Chem. Phys., 69(4), pp. 1352–1360. [CrossRef]
Marko, J. , 2007, “ Torque and Dynamics of Linking Number Relaxation in Stretched Supercoiled DNA,” Phys. Rev. E, 76(2), p. 021926. [CrossRef]
Daniels, B. C. , and Sethna, J. P. , 2011, “ Nucleation at the DNA Supercoiling Transition,” Phys. Rev. E, 83(4), p. 041924. [CrossRef]


Grahic Jump Location
Fig. 1

Cartoon illustrating the formation of plectonemic supercoils in DNA by means of the magnetic tweezer apparatus

Grahic Jump Location
Fig. 2

A representation of the dWLC model

Grahic Jump Location
Fig. 3

The evaluation of αi and γi, the two components of the bend angle τi (see text)

Grahic Jump Location
Fig. 4

The three regimes that occur during plectonemic supercoiling of DNA. The regimes are demarcated by the black vertical broken lines with the prebuckling regime on the left, the buckling transition regime in the middle, and the post-buckling regime on the right.

Grahic Jump Location
Fig. 5

Two metastable states exist within the buckling transition regime. The data in this plot were obtained for a linking number at which both states have equal probabilities. (Top) Rapid “hopping” between the two equilibrium states and the fluctuation about the mean value of each state. (Bottom) Histogram of end-to-end extensions within the buckling transition.

Grahic Jump Location
Fig. 6

The probability of finding DNA in one of the looped (circles) or extended (inverted triangles) states, within the buckling transition regime, depends on the number of turns at which it is held. An equilibrium point at which both states are equally probable can be estimated by the point of intersection of linear fits to the probability data.

Grahic Jump Location
Fig. 7

Within the buckling transition regime, increasing number of turns not only increases the probability of finding the DNA in the looped state but also increases the size of the extension jump between both states. With increasing number of turns, while the change in the equilibrium position of the extended state remains virtually unchanged, a shift is noticed in the equilibrium position of the looped state to the left.

Grahic Jump Location
Fig. 8

A strong correlation exists between the elastic energy (top) of DNA and its end-to-end extension (bottom) as it hops between the looped and extended states within the buckling transition regime



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In