The effect of impulsive stiffness variation to the modal energy content of dynamical systems is investigated in this contribution. Therefore, the overall number of modes of vibration is divided into a set of lower and a set of higher modes. It is shown analytically that impulsive stiffness variation, applied in a state-dependent, nonlinear manner allows a targeted transfer of discrete amounts of energy across mode sets. Analytical conditions are presented, holding for a transfer from the lower to the higher mode set or vice versa. The existence of transfer cases where no energy crosses the system boundary, i.e., the energy-neutral case, is investigated in a comprehensive manner. Some numerical investigations underline that shifting vibration energy to higher modes causes a faster decay of vibration amplitudes, as the damping properties of a mechanical system can be utilized more effectively. Moreover, it is demonstrated that the proposed approach allows to eliminate vibration frequencies from the frequency spectrum of mechanical systems.