Research Papers

Comparison of Semirecursive and Subsystem Synthesis Algorithms for the Efficient Simulation of Multibody Systems

[+] Author and Article Information
Alfonso Callejo

Centre for Intelligent Machines,
McGill University,
Montréal, QC H3A 0E9, Canada
e-mail: acallejo@cim.mcgill.ca

Yongjun Pan

Universidad Politécnica de Madrid,
Madrid 28031, Spain
e-mail: yongjun.pan@alumnos.upm.es

José L. Ricón

Universidad Politécnica de Madrid,
Madrid 28031, Spain
e-mail: jl.ricon@alumnos.upm.es

József Kövecses

Centre for Intelligent Machines,
McGill University,
Montréal, QC H3A 0E9, Canada
e-mail: jozsef.kovecses@mcgill.ca

Javier García de Jalón

Universidad Politécnica de Madrid,
Madrid 28031, Spain
e-mail: javier.garciadejalon@upm.es

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received August 15, 2016; final manuscript received September 27, 2016; published online November 22, 2016. Assoc. Editor: Paramsothy Jayakumar.

J. Comput. Nonlinear Dynam 12(1), 011020 (Nov 22, 2016) (11 pages) Paper No: CND-16-1383; doi: 10.1115/1.4034870 History: Received August 15, 2016; Revised September 27, 2016

A great variety of formulations exist for the numerical simulation of rigid-body systems, particularly of medium-large systems such as vehicles. Topological formulations, which are considered to be the most efficient ones, are often cumbersome and not necessarily easy to implement. As a consequence, there is a lack of comparative evidence to support the performance of these formulations. In this paper, we present and compare three state-of-the-art topological formulations for multibody dynamics: generalized semirecursive, double-step semirecursive, and subsystem synthesis methods. We analyze the background, underlying principles, numerical efficiency, and accuracy of these formulations in a systematic way. A 28-degree-of-freedom, open-loop rover model and a 16-degree-of-freedom, closed-loop sedan car model are selected as study cases. Insight on the key aspects toward performance is provided.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Schiehlen, W. , 2014, “ History of Benchmark Problems in Multibody Dynamics,” Multibody Dynamics: Computational Methods and Applications, Springer, Cham, Switzerland, pp. 357–368.
Pàmies-Vilà, R. , Font-Llagunes, J. M. , Lugrís, U. , Alonso, F. J. , and Cuadrado, J. , 2015, “ A Computational Benchmark for 2D Gait Analysis Problems,” New Trends in Mechanism and Machine Science, Springer, Cham, Switzerland, pp. 689–697.
González, M. , Dopico, D. , Lugrís, U. , and Cuadrado, J. , 2006, “ A Benchmarking System for MBS Simulation Software: Problem Standardization and Performance Measurement,” Multibody Syst. Dyn., 16(2), pp. 179–190. [CrossRef]
Walker, M. W. , and Orin, D. E. , 1982, “ Efficient Dynamic Computer Simulation of Robotic Mechanisms,” ASME J. Dyn. Syst., Meas., Control, 104(3), pp. 205–211. [CrossRef]
Jerkovsky, W. , 1978, “ The Structure of Multibody Dynamics Equations,” J. Guid. Control Dyn., 1(3), pp. 173–182. [CrossRef]
Avello, A. , Jiménez, J. , Bayo, E. , and García de Jalón, J. , 1993, “ A Simple and Highly Parallelizable Method for Real-Time Dynamic Simulation Based on Velocity Transformations,” Comput. Methods Appl. Mech. Eng., 107(3), pp. 313–339. [CrossRef]
Featherstone, R. , 1983, “ The Calculation of Robot Dynamics Using Articulated-Body Inertias,” Int. J. Rob. Res., 2(1), pp. 13–30. [CrossRef]
Stelzle, W. , Kecskeméthy, A. , and Hiller, M. , 1995, “ A Comparative Study of Recursive Methods,” Arch. Appl. Mech., 66(1), pp. 9–19. [CrossRef]
Bae, D.-S. , and Haug, E. J. , 1987, “ A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems,” J. Struct. Mech., 15(4), pp. 481–506.
García de Jalón, J. , and Bayo, E. , 1994, Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge, Springer, New York.
García de Jalón, J. , Callejo, A. , and Hidalgo, A. F. , 2012, “ Efficient Solution of Maggi's Equations,” ASME J. Comput. Nonlinear Dyn., 7(2), p. 021003. [CrossRef]
Kim, S. , and Vanderploeg, M. , 1986, “ A General and Efficient Method for Dynamic Analysis of Mechanical Systems Using Velocity Transformations,” ASME J. Mech. Des., 108(2), pp. 176–182.
Negrut, D. , Serban, R. , and Potra, F. A. , 1997, “ A Topology-Based Approach to Exploiting Sparsity in Multibody Dynamics: Joint Formulation,” J. Struct. Mech., 25(2), pp. 221–241.
Bae, D. , Han, J. , and Yoo, H. , 1999, “ A Generalized Recursive Formulation for Constrained Mechanical System Dynamics,” Mech. Struct. Mach., 27(3), pp. 293–315. [CrossRef]
Bae, D. , Han, J. , and Choi, J. , 2000, “ An Implementation Method for Constrained Flexible Multibody Dynamics Using a Virtual Body and Joint,” Multibody Syst. Dyn., 4(4), pp. 297–315. [CrossRef]
Bae, D. , Lee, J. , Cho, H. , and Yae, H. , 2000, “ An Explicit Integration Method for Realtime Simulation of Multibody Vehicle Models,” Comput. Methods Appl. Mech. Eng., 187(1–2), pp. 337–350. [CrossRef]
Bae, D. , Cho, H. , Lee, S. , and Moon, W. , 2001, “ Recursive Formulas for Design Sensitivity Analysis of Mechanical Systems,” Comput. Methods Appl. Mech. Eng., 190(29–30), pp. 3865–3879. [CrossRef]
Bae, D. S. , Han, J. M. , Choi, J. H. , and Yang, S. M. , 2001, “ A Generalized Recursive Formulation for Constrained Flexible Multibody Dynamics,” Int. J. Numer. Methods Eng., 50(8), pp. 1841–1859. [CrossRef]
Ricón, J. L. , 2014, “ Implementación de la formulación implícita semi-recursiva de Bae para la simulación en tiempo real de sistemas multicuerpo,” Master's thesis, ETSII—Technical University of Madrid, Madrid, Spain.
Yen, J. , Haug, E. J. , and Potra, F. A. , 1990, “ Numerical Method for Constrained Equations of Motion in Mechanical Systems Dynamics,” Center for Simulation and Design Optimization, University of Iowa, Iowa City, IA, Technical Report No. R-92.
Funes, F. J. , and García de Jalón, J. , 2016, “ An Efficient Dynamic Formulation for Solving Rigid and Flexible Multibody Systems Based on Semirecursive Method and Implicit Integration,” ASME J. Comput. Nonlinear Dyn., 11(5), p. 051001. [CrossRef]
Rodríguez, J. I. , Jiménez, J. M. , Funes, F. J. , and García de Jalón, J. , 2004, “ Recursive and Residual Algorithms for the Efficient Numerical Integration of Multi-Body Systems,” Multibody Syst. Dyn., 11(4), pp. 295–320. [CrossRef]
García de Jalón, J. , Álvarez, E. , de Ribera, F. A. , Rodríguez, I. , and Funes, F. J. , 2005, “ A Fast and Simple Semi-Recursive Formulation for Multi-Rigid-Body Systems,” Advances in Computational Multibody Systems (Computational Methods in Applied Sciences, Vol. 2), J. Ambrósio , ed., Springer, Dordrecht, The Netherlands, pp. 1–23.
Jerkovsky, W. , 1978, “ The Structure of Multibody Dynamic Equations,” J. Guid. Control Dyn., 1(3), pp. 173–182. [CrossRef]
Wittenburg, J. , 1977, Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart, Germany.
von Schwerin, R. , 1999, Multibody System Simulation, Numerical Methods, Algorithms and Software, Springer, Berlin.
Kurdila, A. , Papastavridis, J. G. , and Kamat, M. P. , 1990, “ Role of Maggi's Equations in Computational Methods for Constrained Multibody Systems,” J. Guid. Control Dyn., 13(1), pp. 113–120. [CrossRef]
Papastavridis, J. G. , 1990, “ Maggi's Equations of Motion and the Determination of Constraint Reactions,” J. Guid. Control Dyn., 13(2), pp. 213–220. [CrossRef]
Wampler, C. , Buffinton, K. , and Shu-hui, J. , 1985, “ Formulation of Equations of Motion for Systems Subject to Constraints,” ASME J. Appl. Mech., 52(2), pp. 465–470. [CrossRef]
Laulusa, A. , and Bauchau, O. A. , 2007, “ Review of Classical Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn., 3(1), p. 011004. [CrossRef]
Serban, R. , and Haug, E. , 2000, “ Globally Independent Coordinates for Real-Time Vehicle Simulation,” ASME J. Mech. Des., 122(4), pp. 575–582. [CrossRef]
Kim, S.-S. , 2002, “ A Subsystem Synthesis Method for Efficient Vehicle Multibody Dynamics,” Multibody Syst. Dyn., 7(2), pp. 189–207. [CrossRef]
Kim, S.-S. , and Wang, J.-H. , 2005, “ Subsystem Synthesis Methods With Independent Coordinates for Real-Time Multibody Dynamics,” J. Mech. Sci. Technol., 19(1), pp. 312–319. [CrossRef]
Kim, S.-S. , and Jeong, W. , 2007, “ Subsystem Synthesis Method With Approximate Function Approach for a Real-Time Multibody Vehicle Model,” Multibody Syst. Dyn., 17(2–3), pp. 141–156. [CrossRef]
Pacejka, H. B. , 2012, Tyre and Vehicle Dynamics, Elsevier/Butterworth-Heinemann, Oxford, UK.


Grahic Jump Location
Fig. 1

Kinematic relationship between two connected bodies

Grahic Jump Location
Fig. 2

Structure of RdTMΣRd (dependent-coordinate form)

Grahic Jump Location
Fig. 3

Structure of RzTRdTMΣRdRz (independent-coordinate form)

Grahic Jump Location
Fig. 4

Exploration rover: multibody model

Grahic Jump Location
Fig. 5

Sedan vehicle: multibody model

Grahic Jump Location
Fig. 6

Rover: system topology

Grahic Jump Location
Fig. 7

Sedan vehicle: system topology

Grahic Jump Location
Fig. 8

X-, Y-, and Z-displacements of the rover chassis

Grahic Jump Location
Fig. 9

X-, Y-, and Z-displacements of the sedan chassis



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In