Research Papers

Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System

[+] Author and Article Information
Wei Hu

School of Electronics and
Information Engineering,
Anhui University,
Hefei 230601, China
e-mail: hwei@ahu.edu.cn

Dawei Ding

School of Electronics and
Information Engineering,
Anhui University,
Hefei 230601, China
e-mail: dwding@ahu.edu.cn

Nian Wang

School of Electronics and
Information Engineering,
Anhui University,
Hefei 230601, China
e-mail: wn_xlb@ahu.edu.cn

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received August 24, 2016; final manuscript received November 24, 2016; published online xx xx, xxxx. Assoc. Editor: Dumitru Baleanu.

J. Comput. Nonlinear Dynam 12(4), 041003 (Jan 19, 2017) (8 pages) Paper No: CND-16-1402; doi: 10.1115/1.4035412 History: Received August 24, 2016; Revised November 24, 2016

A simplest fractional-order delayed memristive chaotic system is investigated in order to analyze the nonlinear dynamics of the system. The stability and bifurcation behaviors of this system are initially investigated, where time delay is selected as the bifurcation parameter. Some explicit conditions for describing the stability interval and the transversality condition of the emergence for Hopf bifurcation are derived. The period doubling route to chaos behaviors of such a system is discussed by using a bifurcation diagram, a phase diagram, a time-domain diagram, and the largest Lyapunov exponents (LLEs) diagram. Specifically, we study the influence of time delay on the chaotic behavior, and find that when time delay increases, the transitions from one cycle to two cycles, two cycles to four cycles, and four cycles to chaos are observed in this system model. Corresponding critical values of time delay are determined, showing the lowest orders for chaos in the fractional-order delayed memristive system. Finally, numerical simulations are provided to verify the correctness of theoretical analysis using the modified Adams–Bashforth–Moulton method.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Chua, L. O. , 1971, “ Memristor: The Missing Circuit Element,” IEEE Trans. Circuit Theory, 18(5), pp. 507–519. [CrossRef]
Strukov, D. B. , Snider, G. S. , Stewart, D. R. , and Williams, R. S. , 2008, “ The Missing Memristor Found,” Nature, 453(7191), pp. 80–83. [CrossRef] [PubMed]
Itoh, M. , and Chua, L. O. , 2008, “ Memristor Oscillators,” Int. J. Bifurcation Chaos, 18(11), pp. 3183–3206. [CrossRef]
Corinto, F. , Ascoli, A. , and Gilli, M. , 2011, “ Nonlinear Dynamics of Memristor Oscillators,” IEEE Trans. Circuits Syst. I, 58(6), pp. 1323–1336. [CrossRef]
Muthuswamy, B. , and Kokate, P. P. , 2009, “ Memristor-Based Chaotic Circuits,” IETE Tech. Rev., 26(6), pp. 417–429. [CrossRef]
Vourkas, I. , and Sirakoulis, G. C. , 2012, “ A Novel Design and Modeling Paradigm for Memristor-Based Crossbar Circuits,” IEEE Trans. Nanotechnol., 11(6), pp. 1151–1159. [CrossRef]
Cang, S. , Wu, A. , Wang, Z. , Xue, W. , and Chen, Z. , 2016, “ Birth of One-to-Four-Wing Chaotic Attractors in a Class of Simplest Three-Dimensional Continuous Memristive Systems,” Nonlinear Dyn., 83(4), pp. 1987–2001. [CrossRef]
Kengne, J. , Tabekoueng, Z. N. , Tamba, V. K. , and Negou, A. N. , 2015, “ Periodicity, Chaos, and Multiple Attractors in a Memristor-Based Shinriki's Circuit,” Chaos, 25(10), p. 103126. [CrossRef] [PubMed]
Zhou, L. , Wang, C. , and Zhou, L. , 2016, “ Generating Hyperchaotic Multi-Wing Attractor in a 4D Memristive Circuit,” Nonlinear Dyn., ▪(▪), pp. 1–11.
Fitch, A. L. , Yu, D. , Iu, H. H. , and Sreeram, V. , 2012, “ Hyperchaos in a Memristor-Based Modified Canonical Chua’s Circuit,” Int. J. Bifurcation Chaos, 22(6), p. 1250133. [CrossRef]
Ma, J. , Chen, Z. , Wang, Z. , and Zhang, Q. , 2015, “ A Four-Wing Hyper-Chaotic Attractor Generated From a 4-D Memristive System With a Line Equilibrium,” Nonlinear Dyn., 81(3), pp. 1275–1288. [CrossRef]
Lin, T. C. , Huang, F. Y. , Du, Z. , and Lin, Y. C. , 2015, “ Synchronization of Fuzzy Modeling Chaotic Time Delay Memristor-Based Chua's Circuits With Application to Secure Communication,” Int. J. Fuzzy Syst., 17(2), pp. 206–214. [CrossRef]
Podlubny, I. , 1999, Fractional Differential Equations, Academic Press, New York.
Hilfer, R. , 2001, Applications of Fractional Calculus in Physics, World Scientific, Hackensack, NJ.
Kilbas, A. A. , Srivastava, H. M. , and Trujillo, J. J. , 2006, Theory and Application of Fractional Differential Equations, Elsevier, New York.
Abbas, S. , Erturk, V. S. , and Momani, S. , 2014, “ Dynamical Analysis of the Irving–Mullineux Oscillator Equation of Fractional Order,” Signal Process., 102(▪), pp. 171–176. [CrossRef]
Golmankhaneh, A. K. , Arefi, R. , and Baleanu, D. , 2015, “ Synchronization in a Nonidentical Fractional Order of a Proposed Modified System,” J. Vib. Control, 21(6), pp. 1154–1161. [CrossRef]
Li, C. , Su, K. , and Wu, L. , 2013, “ Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System,” ASME J. Comput. Nonlinear Dyn., 8(3), p. 031005. [CrossRef]
Aghababa, M. P. , 2014, “ Control of Fractional-Order Systems Using Chatter-Free Sliding Mode Approach,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031003. [CrossRef]
Chen, D. , and Liu, W. , 2016, “ Chaotic Behavior and Its Control in a Fractional-Order Energy Demand–Supply System,” ASME J. Comput. Nonlinear Dyn., 11(6), p. 061010. [CrossRef]
Lu, J. G. , 2006, “ Chaotic Dynamics of the Fractional-Order Lü System and Its Synchronization,” Phys. Lett. A, 354(4), pp. 305–311. [CrossRef]
Golmankhaneh, A. K. , Arefi, R. , and Baleanu, D. , 2013, “ The Proposed Modified Liu System With Fractional Order,” Adv. Math. Phys., 2013(▪), ▪.
Li, C. , and Chen, G. , 2004, “ Chaos in the Fractional Order Chen System and Its Control,” Chaos Solitons Fractals, 22(3), pp. 549–554. [CrossRef]
Cao, J. , Ma, C. , Xie, H. , and Jiang, Z. , 2010, “ Nonlinear Dynamics of Duffing System With Fractional Order Damping,” ASME J. Comput. Nonlinear Dyn., 5(4), p. 041012. [CrossRef]
Xu, Y. , Li, Y. , and Liu, D. , 2014, “ Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031015. [CrossRef]
Wu, G. C. , and Baleanu, D. , 2014, “ Discrete Fractional Logistic Map and Its Chaos,” Nonlinear Dyn., 75(1–2), pp. 283–287. [CrossRef]
Wu, G. C. , Baleanu, D. , Xie, H. P. , and Chen, F. L. , 2016, “ Chaos Synchronization of Fractional Chaotic Maps Based on the Stability Condition,” Physica A, 460(▪), pp. 374–383. [CrossRef]
Wang, Z. , Huang, X. , and Shi, G. , 2011, “ Analysis of Nonlinear Dynamics and Chaos in a Fractional Order Financial System With Time Delay,” Comput. Math. Appl., 62(3), pp. 1531–1539. [CrossRef]
Zhen, W. , Xia, H. , Ning, L. , and Xiao-Na, S. , 2012, “ Image Encryption Based on a Delayed Fractional-Order Chaotic Logistic System,” Chin. Phys. B, 21(5), p. 050506. [CrossRef]
Rihan, F. A. , Lakshmanan, S. , Hashish, A. H. , Rakkiyappan, R. , and Ahmed, E. , 2015, “ Fractional-Order Delayed Predator–Prey Systems With Holling Type-II Functional Response,” Nonlinear Dyn., 80(1–2), pp. 777–789. [CrossRef]
Chen, L. , Pan, W. , Wu, R. , and He, Y. , 2015, “ New Result on Finite-Time Stability of Fractional-Order Nonlinear Delayed Systems,” ASME J. Comput. Nonlinear Dyn., 10(6), p. 064504. [CrossRef]
Velmurugan, G. , and Rakkiyappan, R. , 2016, “ Hybrid Projective Synchronization of Fractional-Order Chaotic Complex Nonlinear Systems With Time Delays,” ASME J. Comput. Nonlinear Dyn., 11(3), p. 031016. [CrossRef]
Babakhani, A. , Baleanu, D. , and Khanbabaie, R. , 2012, “ Hopf Bifurcation for a Class of Fractional Differential Equations With Delay,” Nonlinear Dyn., 69(3), pp. 721–729. [CrossRef]
Xiao, M. , Zheng, W. X. , and Cao, J. , 2013, “ Hopf Bifurcation of an Neuron Bidirectional Associative Memory Neural Network Model With Delays,” IEEE Trans. Neural Network Learn. Syst., 24(1), pp. 118–132. [CrossRef]
Leung, A. Y. T. , Yang, H. X. , and Zhu, P. , 2014, “ Periodic Bifurcation of Duffing-van der Pol Oscillators Having Fractional Derivatives and Time Delay,” Commun. Nonlinear Sci. Numer. Simul., 19(4), pp. 1142–1155. [CrossRef]
Huang, C. , Cao, J. , and Ma, Z. , 2015, “ Delay-Induced Bifurcation in a Tri-Neuron Fractional Neural Network,” Int. J. Syst. Sci., ▪(▪), pp. 1–10.
Baleanu, D. , Magin, R. L. , Bhalekar, S. , and Daftardar-Gejji, V. , 2015, “ Chaos in the Fractional Order Nonlinear Bloch Equation With Delay,” Commun. Nonlinear Sci. Numer. Simul., 25(1), pp. 41–49. [CrossRef]
Wu, G. C. , and Baleanu, D. , 2015, “ Discrete Chaos in Fractional Delayed Logistic Maps,” Nonlinear Dyn., 80(4), pp. 1697–1703. [CrossRef]
Cafagna, D. , and Grassi, G. , 2012, “ On the Simplest Fractional-Order Memristor-Based Chaotic System,” Nonlinear Dyn., 70(2), pp. 1185–1197. [CrossRef]
Teng, L. , Iu, H. H. , Wang, X. , and Wang, X. , 2014, “ Chaotic Behavior in Fractional-Order Memristor-Based Simplest Chaotic Circuit Using Fourth Degree Polynomial,” Nonlinear Dyn., 77(1–2), pp. 231–241. [CrossRef]
Abdelouahab, M. S. , and Lozi, R. , 2015, “ Hopf Bifurcation and Chaos in Simplest Fractional-Order Memristor-Based Electrical Circuit,” Agric. Econ. Res. Rev., 6(2), pp. 105–119.
Pham, V. T. , Buscarino, A. , Fortuna, L. , and Frasca, M. , 2013, “ Simple Memristive Time-Delay Chaotic Systems,” Int. J. Bifurcation Chaos, 23(4), p. 1350073. [CrossRef]
Petráš, I. , 2010, “ Fractional-Order Memristor-Based Chua's Circuit,” IEEE Trans. Circuits Syst. II, 57(12), pp. 975–979. [CrossRef]
Bhalekar, S. , 2013, “ A Necessary Condition for the Existence of Chaos in Fractional Order Delay Differential Equations,” Int. J. Math. Sci., 7(3), pp. 28–32.
Diethelm, K. , and Ford, N. J. , 2002, “ Analysis of Fractional Differential Equations,” J. Math. Anal. Appl., 265(2), pp. 229–248. [CrossRef]
Diethelm, K. , Ford, N. J. , and Freed, A. D. , 2002, “ A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations,” Nonlinear Dyn., 29(1–4), pp. 3–22. [CrossRef]
Bhalekar, S. , and Daftardar-Gejji, V. , 2011, “ A Predictor-Corrector Scheme for Solving Nonlinear Delay Differential Equations of Fractional Order,” J. Fractional Calc. Appl., 1(5), pp. 1–8.
Wolf, A. , Swift, J. B. , Swinney, H. L. , and Vastano, J. A. , 1985, “ Determining Lyapunov Exponents From a Time Series,” Physica D, 16(3), pp. 285–317. [CrossRef]


Grahic Jump Location
Fig. 1

Circuit model of the delayed memristive chaotic system

Grahic Jump Location
Fig. 7

The detailed dynamical behaviors of the system (6) with different q for τ=1.4: (a) one cycle (q=0.8), (b) two cycles (q=0.84), (c) chaos (q=0.87), (d) chaos (q=0.87), (e) four cycles (q=0.89), (f) eight cycles (q=0.895), (g) chaos (q=0.91), (h) chaos (q=0.91), and (i) chaos (q=0.97)

Grahic Jump Location
Fig. 10

Bifurcation diagram of τ=1.4

Grahic Jump Location
Fig. 2

The corresponding bifurcation point τ0 in the system (6) for different fractional-order q∈[0.2,1]

Grahic Jump Location
Fig. 3

Bifurcation diagram: (a) q=0.6 and (b) q=0.8

Grahic Jump Location
Fig. 4

Time-domain diagram and phase diagram of the fractional system (6) with τ1=0.335<τ0=0.3425 and τ1=0.35>τ0=0.3425 in the initial value (0.2,−0.1) and (1,0.5)

Grahic Jump Location
Fig. 6

The dynamical behaviors of the fractional system (6) with different τ for q=0.9: (a) one cycle (τ=1), (b) two cycles (τ=1.24), (c) four cycles (τ=1.4), and (d) chaos (τ=1.26)

Grahic Jump Location
Fig. 8

Bifurcation diagram of q=0.9

Grahic Jump Location
Fig. 9

Largest Lyapunov exponent of q=0.9

Grahic Jump Location
Fig. 5

Time-domain diagram and phase diagram of the fractional system (6) with τ1=0.495<τ0=0.5004 and τ1=0.505>τ0=0.5004 in the initial value (1,1) and (1.5,1.5)

Grahic Jump Location
Fig. 11

Largest Lyapunov exponent of τ=1.4



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In