Research Papers

One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches

[+] Author and Article Information
Hassen M. Ouakad

Department of Mechanical Engineering,
King Fahd University of Petroleum and Minerals,
Dhahran 31261, Kingdom of Saudi Arabia

Hamid M. Sedighi

Mechanical Engineering Department,
Faculty of Engineering,
Shahid Chamran University of Ahvaz,
Ahvaz 61357-43337, Iran

Mohammad I. Younis

Mechanical Engineering Department,
State University of New York,
Binghamton, NY 13850;
Physical Science and Engineering Division,
King Abdullah University of Science
and Technology,
Thuwal 23955-6900, Kingdom of Saudi Arabia
e-mail: myounis@binghamton.edu

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received November 8, 2016; final manuscript received May 16, 2017; published online July 12, 2017. Assoc. Editor: Sotirios Natsiavas.

J. Comput. Nonlinear Dynam 12(5), 051025 (Jul 12, 2017) (11 pages) Paper No: CND-16-1543; doi: 10.1115/1.4036815 History: Received November 08, 2016; Revised May 16, 2017

The nonlinear modal coupling between the vibration modes of an arch-shaped microstructure is an interesting phenomenon, which may have desirable features for numerous applications, such as vibration-based energy harvesters. This work presents an investigation into the potential nonlinear internal resonances of a microelectromechanical systems (MEMS) arch when excited by static (DC) and dynamic (AC) electric forces. The influences of initial rise and midplane stretching are considered. The cases of one-to-one and three-to-one internal resonances are studied using the method of multiple scales and the direct attack of the partial differential equation of motion. It is shown that for certain initial rises, it is possible to activate a three-to-one internal resonance between the first and third symmetric modes. Also, using an antisymmetric half-electrode actuation, a one-to-one internal resonance between the first symmetric and the second antisymmetric modes is demonstrated. These results can shed light on such interactions that are commonly found on micro and nanostructures, such as carbon nanotubes.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Malihi, S. , Beni, Y. T. , and Golestanian, H. , 2017, “ Dynamic Pull-In Stability of Torsional Nano/Micromirrors With Size-Dependency, Squeeze Film Damping and van der Waals Effect,” Opt. Int. J. Light Electron Opt., 128, pp. 156–171. [CrossRef]
Shojaeian, M. , Beni, Y. T. , and Ataei, H. , 2016, “ Electromechanical Buckling of Functionally Graded Electrostatic Nanobridges Using Strain Gradient Theory,” Acta Astronaut., 118, pp. 62–71. [CrossRef]
Marotti de Sciarra, F. , and Barretta, R. , 2014, “ A Gradient Model for Timoshenko Nanobeams,” Physica E, 62, pp. 1–9. [CrossRef]
Canadija, M. , Barretta, R. , and Marotti de Sciarra, F. , 2016, “ A Gradient Elasticity Model of Bernoulli–Euler Nanobeams in Non-Isothermal Environments,” Eur. J. Mech. A/Solids, 55, pp. 243–255. [CrossRef]
Barretta, R. , Čanadija, M. , and Marotti de Sciarra, F. , 2016, “ A Higher-Order Eringen Model for Bernoulli–Euler Nanobeams,” Arch. Appl. Mech., 86(3), pp. 483–495. [CrossRef]
Akgöz, B. , and Civalek, Ö. , 2014, “ Mechanical Analysis of Isolated Microtubules Based on a Higher-Order Shear Deformation Beam Theory,” Compos. Struct., 118, pp. 9–18. [CrossRef]
Ebrahimi, F. , and Barati, M. R. , 2016, “ Size-Dependent Thermal Stability Analysis of Graded Piezomagnetic Nanoplates on Elastic Medium Subjected to Various Thermal Environments,” Appl. Phys. A, 122(10), p. 910. [CrossRef]
Shaat, M. , Akbarzadeh Khorshidi, M. , Abdelkefi, A. , and Shariati, M. , 2016, “ Modeling and Vibration Characteristics of Cracked Nano-Beams Made of Nanocrystalline Materials,” Int. J. Mech. Sci., 115–116, pp. 574–585. [CrossRef]
Ouakad, H. M. , and Younis, M. I. , 2010, “ Nonlinear the Dynamic Behavior of MEMS Arch Resonators Actuated Electrically,” Int. J. Non-Linear Mech., 45(7), pp. 704–713. [CrossRef]
Tsai, N.-C. , Sue, C.-Y. , and Lin, C.-C. , 2008, “ Design and Dynamics of an Innovative Micro Gyroscope Against Coupling Effects,” Microsyst. Technol., 14(3), pp. 295–306. [CrossRef]
Sanchez, R. , and Renard, P. , 2006, “ Design of a Micro-Satellite for Precise Formation Flying Demonstration,” Acta Astronaut., 59(8–11), pp. 862–872. [CrossRef]
Comi, C. , Corigliano, A. , Ghisi, A. , and Zerbini, S. , 2013, “ A Resonant Micro Accelerometer Based on Electrostatic Stiffness Variation,” Meccanica, 48(8), pp. 1893–1900. [CrossRef]
Yoo, S. K. , Lee, J. H. , Yun, S.-S. , Gu, M. B. , and Lee, J. H. , 2007, “ Fabrication of a Bio-MEMS Based Cell-Chip for Toxicity Monitoring,” Biosens. Bioelectron., 22(8), pp. 1586–1592. [CrossRef] [PubMed]
Choi, N.-J. , Lee, Y.-S. , Kwak, J.-H. , Park, J.-S. , Park, K.-B. , Shin, K.-S. , Park, H.-D. , Kim, J.-C. , Huh, J.-S. , and Lee, D.-D. , 2005, “ Chemical Warfare Agent Sensor Using MEMS Structure and Thick Film Fabrication Method,” Sens. Actuators B, 108(1–2), pp. 177–183. [CrossRef]
Hafiz, M. , Kosuru, L. , Ramini, A. , Chappanda, K. , and Younis, M. , 2016, “ In-Plane MEMS Shallow Arch Beam for Mechanical Memory,” Micromachines, 7(10), p. 191. [CrossRef]
Hafiz, M. A. A. , Kosuru, L. , and Younis, M. I. , 2016, “ Microelectromechanical Reprogrammable Logic Device,” Nat. Commun., 7, p. 11137. [CrossRef] [PubMed]
Leung, A. Y. T. , and Fung, T. C. , 1990, “ Non-Linear Steady State Vibration and Dynamic Snap Through of Shallow Arch Beams,” Earthquake Eng. Struct. Dyn., 19(3), pp. 409–430. [CrossRef]
Chen, L.-Q. , and Jiang, W.-A. , 2015, “ Internal Resonance Energy Harvesting,” ASME J. Appl. Mech., 82(3), p. 031004. [CrossRef]
Das, K. , and Batra, R. C. , 2009, “ Symmetry Breaking, Snap-Through and Pull-In Instabilities Under Dynamic Loading of Microelectromechanical Shallow Arches,” Smart Mater. Struct., 18(11), p. 115008. [CrossRef]
Ouakad, H. M. , 2013, “ An Electrostatically Actuated MEMS Arch Band-Pass Filter,” Shock Vib., 20(4), pp. 809–819. [CrossRef]
Alkharabsheh, S. A. , and Younis, M. I. , 2013, “ Statics and Dynamics of MEMS Arches Under Axial Forces,” ASME J. Vib. Acoust., 135(2), p. 021007. [CrossRef]
Nayfeh, A. H. , and Emam, S. A. , 2008, “ Exact Solution and Stability of Postbuckling Configurations of Beams,” Nonlinear Dyn., 54(4), pp. 395–408. [CrossRef]
Nayfeh, A. H. , and Balachandran, B. , 1989, “ Modal Interactions in Dynamical and Structural Systems,” ASME Appl. Mech. Rev., 42(11), pp. 175–201. [CrossRef]
Balachandran, B. , and Nayfeh, A. H. , 1990, “ Nonlinear Oscillations of a Harmonically Excited Composite Structure,” Compos. Struct., 16(4), pp. 323–339. [CrossRef]
Alkharabsheh, S. A. , and Younis, M. I. , 2013, “ Dynamics of MEMS Arches of Flexible Supports,” J. Microelectromech. Syst., 22(1), pp. 216–224. [CrossRef]
Ouakad, H. M. , and Younis, M. I. , 2014, “ On Using the Dynamic Snap-Through Motion of MEMS Initially Curved Microbeams for Filtering Applications,” J. Sound Vib., 333(2), pp. 555–568. [CrossRef]
Ghayesh, M. H. , Farokhi, H. , and Alici, G. , 2015, “ Internal Energy Transfer in Dynamical Behavior of Slightly Curved Shear Deformable Microplates,” ASME J. Comput. Nonlinear Dyn., 11(4), p. 041002. [CrossRef]
Medina, L. , Gilat, R. , and Krylov, S. , 2017, “ Latching in Bistable Electrostatically Actuated Curved Micro Beams,” Int. J. Eng. Sci., 110, pp. 15–34. [CrossRef]
Antonio, D. , Zanette, D. H., and López, D., 2012, “Frequency Stabilization in Nonlinear Micromechanical Oscillators. Nat. Commun., 3, p. 806. [CrossRef] [PubMed]
Srinil, N. , and Rega, G. , 2007, “ Two-to-One Resonant Multi-Modal Dynamics of Horizontal/Inclined Cables—Part II: Internal Resonance Activation, Reduced Order Models and Nonlinear Normal Modes,” Nonlinear Dyn., 48(3), pp. 253–274. [CrossRef]
Chen, L. Q. , Zhang, G.-C., and Ding, H., 2015, “ Internal Resonance in Forced Vibration of Coupled Cantilevers Subjected to Magnetic Interaction,” J. Sound Vib., 354, pp. 196–218. [CrossRef]
Westra, H. J. R. , van der Zant, H. S. J., and Venstra, W. J., 2012, “ Modal Interactions of Flexural and Torsional Vibrations in a Microcantilever,” Ultramicroscopy, 120, pp. 41–47. [CrossRef] [PubMed]
Chin, C. , and Nayfeh, A. , 1999, “ Three-to-One Internal Resonances in Parametrically Excited Hinged-Clamped Beams,” Nonlinear Dyn., 20(2), pp. 131–158. [CrossRef]
Nayfeh, A. H. , Chin, C., and Nayfeh, S. A., 1996, “ On Nonlinear Normal Modes of Systems With Internal Resonance,” ASME J. Vib. Acoust., 118(3), pp. 340–345. [CrossRef]
Malhotral, N. , and Namachchivaya, N. , 1997, “ Chaotic Motion of Shallow Arch Structures Under 1:1 Internal Resonance,” J. Eng. Mech., 123(6), pp. 620–627. [CrossRef]
Tien, W. , W.-M., Sri Namachchivaya, N., and Malhotra, N., 1994, “ Non-Linear Dynamics of a Shallow Arch Under Periodic Excitation-II—1: 1 Internal Resonance,” Int. J. Non-Linear Mech., 29(3), pp. 367–386. [CrossRef]
Nayfeh, A. , Lacarbonara, W., and Chin, C.-M., 1999, “ Nonlinear Normal Modes of Buckled Beams: Three-to-One and One-to-One Internal Resonances,” Nonlinear Dyn., 18(3), pp. 253–273. [CrossRef]
El-Bassiouny, A. F. , Kamel, M. M. , and Abdel-Khalik, A. , 2003, “ Two-to-One Internal Resonances in Nonlinear Two Degree of Freedom System With Parametric and External Excitations,” Math. Comput. Simul., 63(1), pp. 45–56. [CrossRef]
El-Bassiouny, A. F. , 2005, “ Three-to-One Internal Resonance in the Nonlinear Oscillation of Shallow Arch,” Phys. Scr., 72(6), pp.439–450. [CrossRef]
Bi, Q. , and Dai, H. H. , 2000, “ Analysis of Non-Linear Dynamics and Bifurcations of a Shallow Arch Subjected to Periodic Excitation With Internal Resonance,” J. Sound Vib., 233(4), pp. 557–571. [CrossRef]
Nayfeh, A. H. , and Pai, P. F. , 2004, Linear and Nonlinear Structural Mechanics, Wiley, New York.
Batra, R, C., Porfiri, M. , and Spinello, D. , 2006, “ Capacitance Estimate for Electrostatically Actuated Narrow Microbeams,” Micro Nano Lett., 1(2), pp. 71–73. [CrossRef]
Batra, R. C. , Porfiri, M. , and Spinello, D. , 2006, “ Electromechanical Model of Electrically Actuated Narrow Microbeams,” J. Microelectromech. Syst., 15(5), pp. 1175–1189. [CrossRef]
Nayfeh, A. H. , 2000, Nonlinear Interactions, Wiley InterScience, New York. [PubMed] [PubMed]
Tondl, A. , Ruigrock, T. , Verhulst, F. , and Nabergoj, R. , 2000, Autoparametric Resonance in Mechanical Systems, Cambridge University Press, Cambridge, UK.
Nayfeh, A. H. , and Mook, D. T. , 1995, Nonlinear Oscillations, Wiley InterScience, New York.
Younis, M. I. , and Nayfeh, A. H. , 2003, “ A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation,” Nonlinear Dyn., 31(1), pp. 91–117. [CrossRef]
Nayfeh, A. H. , and Balachandran, B. , 1995, Applied Nonlinear Dynamics, Wiley, New York.


Grahic Jump Location
Fig. 1

(a) A 3D and (b) a 2D schematic of an electrically actuated MEMS shallow arch

Grahic Jump Location
Fig. 2

The variation of the first three natural frequencies with the initial rise b0 of the shallow arch and the possibility of internal resonances

Grahic Jump Location
Fig. 3

Variation of the amplitudes a1 and a3 with the detuning parameter σ2 for b0 = 3.44 μm, VDC = 10 V, VAC = 5 V, ξ = 0.01, and σ1 = 0: (a) and (b) using the perturbation method and (c) and (b) using the long-time integration

Grahic Jump Location
Fig. 4

Variation of the amplitudes a1 and a3 with the detuning parameter σ2 for b0 = 3.44 μm, VDC = 10 V, VAC = 30 V, ξ = 0.01, and σ1 = 0

Grahic Jump Location
Fig. 5

Variation of the amplitudes a1 and a2 with the detuning parameter σ2 for b0 = 6.32 μm, VDC = 5 V, VAC = 30 V, ξ = 0.01, and σ1 = 0: (a) and (b) using the perturbation method and (c) and (d) using the long-time integration

Grahic Jump Location
Fig. 6

Variation of the amplitudes a1 and a2 with the detuning parameter σ2 for b0 = 6.32 μm, VDC = 5 V, VAC = 30 V, ξ = 0.001, and σ1 = 0



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In