Noye,
B. J.
, and
Dehghan,
M.
, 1999, “
New Explicit Finite Difference Schemes for Two-Dimensional Diffusion Subject to Specification of Mass,” Numer. Methods Partial Differ. Equations,
15(4), pp. 521–534.

[CrossRef]
Choi,
H. J.
, and
Kweon,
J. R.
, 2016, “
A Finite Element Method for Singular Solutions of the Navier Stokes Equations on a Non-Convex Polygon,” J. Comput. Appl. Math.,
292, pp. 342–362.

[CrossRef]
Parand,
K.
,
Abbasbandy,
S.
,
Kazem,
S.
, and
Rezaei,
A. R.
, 2011, “
An Improved Numerical Method for a Class of Astrophysics Problems Based on Radial Basis Functions,” Phys. Scr.,
83(1), p. 015011.

[CrossRef]
Parand,
K.
, and
Hemami,
M.
, 2017, “
Numerical Study of Astrophysics Equations by Meshless Collocation Method Based on Compactly Supported Radial Basis Function,” Int. J. Appl. Comput. Math.,
3(2), pp. 1053–1075.

[CrossRef]
Kazem,
S.
,
Rad,
J. A.
,
Parand,
K.
,
Shaban,
M.
, and
Saberi,
H.
, 2012, “
The Numerical Study on the Unsteady Flow of Gas in a Semi-Infinite Porous Medium Using an RBF Collocation Method,” Int. J. Comput. Math.,
89(16), pp. 2240–2258.

[CrossRef]
Franke,
R.
, 1982, “
Scattered Data Interpolation: Tests of Some Methods,” Math. Comput.,
38, pp. 181–200.

Rashedi,
K.
,
Adibi,
H.
,
Rad,
J. A.
, and
Parand,
K.
, 2014, “
Application of Meshfree Methods for Solving the Inverse One-Dimensional Stefan Problem,” Eng. Anal. Boundary Elem.,
40, pp. 1–21.

[CrossRef]
Rad,
J. A.
,
Kazem,
S.
, and
Parand,
K.
, 2014, “
Optimal Control of a Parabolic Distributed Parameter System Via Radial Basis Functions,” Commun. Nonlinear Sci. Numer. Simul.,
19(8), pp. 2559–2567.

[CrossRef]
Parand,
K.
,
Hossayni,
S. A.
, and
Rad,
J. A.
, 2016, “
Operation Matrix Method Based on Bernstein Polynomials for Riccati Differential Equation and Volterra Population Model,” Appl. Math. Model.,
40(2), pp. 993–1011.

[CrossRef]
Hossayni,
S. A.
,
Rad,
J. A.
,
Parand,
K.
, and
Abbasbandy,
S.
, 2015, “
Application of the Exact Operational Matrices for Solving the Emden-Fowler Equations Arising in Astrophysics,” Int. J. Ind. Math.,
7(4), pp. 351–374.

Parand,
K.
,
Dehghan,
M.
, and
Taghavi,
A.
, 2010, “
Modified Generalized Laguerre Function Tau Method for Solving Laminar Viscous Flow: The Blasius Equation,” Int. J. Numer. Method. Heat Fluid Flow,
20(7), pp. 728–743.

[CrossRef]
Parand,
K.
,
Delafkar,
Z.
,
Pakniat,
N.
,
Pirkhedri,
A.
, and
Kazemnasab Haji,
M.
, 2011, “
Collocation Method Using Sinc and Rational Legendre Functions for Solving Volterra's Population Model,” Commun. Nonlinear Sci. Numer. Simul.,
16(4), pp. 1811–1819.

[CrossRef]
Funaro,
D.
, and
Kavian,
O.
, 1991, “
Approximation of Some Diffusion Evolution Equations in Unbounded Domains by Hermite Functions,” Math. Comput.,
57(196), pp. 597–619.

[CrossRef]
Guo,
B. Y.
, and
Shen,
J.
, 2000, “
Laguerre-Galerkin Method for Nonlinear Partial Differential Equations on a Semi-Infinite Interval,” Numer. Math.,
86(4), pp. 635–654.

[CrossRef]
Guo,
B. Y.
, 1998, “
Gegenbauer Approximation and Its Applications to Differential Equations on the Whole Line,” J. Math. Anal. Appl.,
226(1), pp. 180–206.

[CrossRef]
Guo,
B. Y.
, 2000, “
Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations,” J. Math. Anal. Appl.,
243(2), pp. 373–408.

[CrossRef]
Rad,
J. A.
,
Parand,
K.
, and
Abbasbandy,
S.
, 2015, “
Local Weak Form Meshless Techniques Based on the Radial Point Interpolation (RPI) Method and Local Boundary Integral Equation (LBIE) Method to Evaluate European and American Options,” Commun. Nonlinear Sci. Numer. Simul.,
22(1), pp. 1178–1200.

[CrossRef]
Rad,
J. A.
,
Parand,
K.
, and
Ballestra,
L. V.
, 2015, “
Pricing European and American Options by Radial Basis Point Interpolation,” Appl. Math. Comput.,
251, pp. 363–377.

Delkhosh,
M.
,
Delkhosh,
M.
, and
Jamali,
M.
, 2012, “
Introduction to Green's Function and Its Numerical Solution,” Middle-East J. Sci. Res.,
11(7), pp. 974–981.

Parand,
K.
, and
Delkhosh,
M.
, 2017, “
Solving the Nonlinear Schlomilch's Integral Equation Arising in Ionospheric Problems,” Afr. Mat.,
28(3), pp. 459–480.

[CrossRef]
Baharifard,
F.
,
Kazem,
S.
, and
Parand,
K.
, 2016, “
Rational and Exponential Legendre Tau Method on Steady Flow of a Third Grade Fluid in a Porous Half Space,” Int. J. Appl. Comput. Math.,
2(4), pp. 679–698.

[CrossRef]
Parand,
K.
, and
Delkhosh,
M.
, 2017, “
Accurate Solution of the Thomas-Fermi Equation Using the Fractional Order of Rational Chebyshev Functions,” J. Comput. Appl. Math.,
317, pp. 624–642.

[CrossRef]
Parand,
K.
,
Yousefi,
H.
,
Delkhosh,
M.
, and
Ghaderi,
A.
, 2016, “
A Novel Numerical Technique to Obtain an Accurate Solution to the Thomas-Fermi Equation,” Eur. Phys. J. Plus,
131(7), p. 228.

[CrossRef]
Adomian,
G.
, 1988, “
A Review of the Decomposition Method in Applied Mathematics,” J. Math. Anal. Appl.,
135(2), pp. 501–544.

[CrossRef]
Tatari,
M.
,
Dehghan,
M.
, and
Razzaghi,
M.
, 2007, “
Application of the Adomian Decomposition Method for the Fokker-Planck Equation,” Math. Comput. Model.,
45(5–6), pp. 639–650.

[CrossRef]
He,
J. H.
, 1999, “
Homotopy Perturbation Technique,” Comput. Method. Appl. Mech. Eng.,
178(3–4), pp. 257–262.

[CrossRef]
He,
J. H.
, 1998, “
Approximate Analytical Solution for Seepage Flow With Fractional Derivatives in Porous Media,” Comput. Method. Appl. Mech. Eng.,
167(1–2), pp. 57–68.

[CrossRef]
He,
J. H.
, 2003, “
Homotopy Perturbation Method: A New Nonlinear Analytical Technique,” Appl. Math. Comput.,
135(1), pp. 73–79.

Abbasbandy,
S.
,
Modarrespoor,
D.
,
Parand,
K.
, and
Rad,
J. A.
, 2013, “
Analytical Solution of the Transpiration on the Boundary Layer Flow and Heat Transfer Over a Vertical Slender Cylinder,” Quaestiones Math.,
36(3), pp. 353–380.

[CrossRef]
He,
J. H.
, 1997, “
A New Approach to Nonlinear Partial Differential Equations,” Commun. Nonlinear Sci. Numer. Simul.,
2(4), pp. 230–235.

[CrossRef]
Shakeri,
F.
, and
Dehghan,
M.
, 2008, “
Numerical Solution of the Klein-Gordon Equation Via He's Variational Iteration Method,” Nonlinear Dyn.,
51(1–2), pp. 89–97.

[CrossRef]
Delkhosh,
M.
, and
Delkhosh,
M.
, 2012, “
Analytic Solutions of Some Self-Adjoint Equations by Using Variable Change Method and Its Applications,” J. Appl. Math.,
2012, p. 180806.

[CrossRef]
He,
J. H.
, and
Wu,
X. H.
, 2006, “
Exp-Function Method for Nonlinear Wave Equations,” Chaos Solitons Fractals,
30(3), pp. 700–708.

[CrossRef]
Parand,
K.
, and
Rad,
J. A.
, 2012, “
Exp-Function Method for Some Nonlinear PDE's and a Nonlinear ODE's,” J. King Saud Univ.-Sci.,
24(1), pp. 1–10.

[CrossRef]
Kidder,
R. E.
, 1957, “
Unsteady Flow of Gas Through a Semi-Infinite Porous Medium,” ASME J. Appl. Mech.,
24, pp. 329–332.

Na,
T. Y.
, 1979, Computational Methods in Engineering Boundary Value Problems,
Academic Press,
New York.

Agarwal,
R. P.
, and
O'Regan,
D.
, 2002, “
Infinite Interval Problems Modeling the Flow of a Gas Through a Semi-Infinite Porous Medium,” Stud. Appl. Math.,
108(3), pp. 245–257.

[CrossRef]
Baxley,
J. V.
, 1990, “
Existence and Uniqueness for Nonlinear Boundary Value Problems on Infinite Intervals,” J. Math. Anal. Appl.,
147(1), pp. 122–133.

[CrossRef]
Countryman,
M.
, and
Kannan,
R.
, 1994, “
Nonlinear Boundary Value Problems on Semi-Infinite Intervals,” Comput. Math. Appl.,
28(10–12), pp. 59–75.

[CrossRef]
Panayotounakos,
D. E.
,
Sotiropoulou,
A. B.
,
Sotiropoulos,
N. B.
, and
Manios,
M.
, 2007, “
Exact Analytic Solutions of the Porous Media and the Gas Pressure Diffusion ODEs in Non-Linear Mechanics,” Int. J. Non-Linear Mech.,
42(1), pp. 157–163.

[CrossRef]
Wazwaz,
A. M.
, 2001, “
The Modified Decomposition Method Applied to Unsteady Flow of Gas Through a Porous Medium,” Appl. Math. Comput.,
118(2–3), pp. 123–132.

Wazwaz,
A. M.
, 2014, “
The Variational Iteration Method for Solving Linear and Nonlinear ODEs and Scientific Models With Variable Coefficients,” Cent. Eur. J. Eng.,
4(1), pp. 64–71.

Parand,
K.
,
Shahini,
M.
, and
Taghavi,
A.
, 2009, “
Generalized Laguerre Polynomials and Rational Chebyshev Collocation Method for Solving Unsteady Gas Equation,” Int. J. Contemp. Math. Sci.,
4(21), pp. 1005–1011.

Parand,
K.
,
Taghavi,
A.
, and
Shahini,
M.
, 2009, “
Comparison Between Rational Chebyshev and Modified Generalized Laguerre Functions Pseudospectral Methods for Solving Lane-Emden and Unsteady Gas Equations,” Acta Phys. Pol. B,
40(6), p. 1749.

Parand,
K.
, and
Nikarya,
M.
, 2014, “
Solving the Unsteady Isothermal Gas Through a Micro-Nano Porous Medium Via Bessel Function Collocation Method,” J. Comput. Theor. Nanosci.,
11(1), pp. 131–136.

[CrossRef]
Parand,
K.
, and
Hemami,
M.
, 2016, “
Application of Meshfree Method Based on Compactly Supported Radial Basis Function for Solving Unsteady Isothermal Gas Through a Micro-Nano Porous Medium,” Iranian J. Sci. Tech. Trans. A, epub.

Taghavi,
A.
,
Parand,
K.
,
Shams,
A.
, and
Sofloo,
H. G.
, 2010, “
Spectral Method for Solving Differential Equation of Gas Flow Through a Micro-Nano Porous Media,” J. Comput. Theor. Nanosci.,
7(3), pp. 542–546.

[CrossRef]
Taghavi,
A.
,
Parand,
K.
, and
Fani,
H.
, 2009, “
Lagrangian Method for Solving Unsteady Gas Equation,” Int. J. Math. Comput. Phys. Electr. Comp. Eng.,
3(11), pp. 991–995.

Noor,
M. A.
, and
Mohyud-Din,
S. T.
, 2009, “
Variational Iteration Method for Unsteady Flow of Gas Through a Porous Medium Using He's Polynomials and Padé Approximate,” Comput. Math. Appl.,
58(11–12), pp. 2182–2189.

[CrossRef]
Khan,
Y.
,
Faraz,
N.
, and
Yildirim,
A.
, 2010, “
Series Solution for Unsteady Gas Equation Via MLDM-Padé Technique,” World Appl. Sci. J.,
9, pp. 27–31.

Rezaei,
A. R.
,
Parand,
K.
, and
Pirkhedri,
A.
, 2011, “
Numerical Study on Gas Flow Through a Micro-Nano Porous Media Based on Special Functions,” J. Comput. Theor. Nanosci.,
8(2), pp. 282–288.

[CrossRef]
Mohyud-Din,
S. T.
,
Yildirim,
A.
, and
Hosseini,
M. M.
, 2010, “
Variational Iteration Method for Initial and Boundary Value Problems Using He's Polynomials,” Int. J. Differ. Equations,
2010, p. 426213.

[CrossRef]
Maleki,
M.
,
Hashim,
I.
, and
Abbasbandy,
S.
, 2012, “
Analysis of IVPs and BVPs on Semi-Infinite Domains Via Collocation Methods,” J. Appl. Math.,
2012, p. 696574.

Rad,
J. A.
,
Ghaderi,
S. M.
, and
Parand,
K.
, 2011, “
Numerical and Analytical Solution of Gas Flow Through a Micro-Nano Porous Media: A Comparison,” J. Comput. Theor. Nanosci.,
8(10), pp. 2033–2041.

[CrossRef]
Abbasbandy,
S.
, 2012, “
Numerical Study on Gas Flow Through a Micro-Nano Porous Media,” Acta Phys. Pol. A,
121(3), pp. 581–585.

[CrossRef]
Upadhyay,
S.
, and
Rai,
K. N.
, 2014, “
Collocation Method Applied to Unsteady Flow of Gas Through a Porous Medium,” Int. J. Appl. Math. Res.,
3(3), pp. 251–259.

[CrossRef]
Gheorghiu,
C. I.
, 2015, “
Laguerre Collocation Solution vs. Analytic Results for Singular Semilinear BVPs on the Half Line,” ROMAI J.,
11(1), pp. 69–87.

Iacono,
R.
, and
Boyd,
J. P.
, 2015, “
The Kidder Equation:
uxx+2xux/1−αu=0,” Stud. Appl. Math.,
135(1), pp. 63–85.

[CrossRef]
Kazem,
S.
,
Abbasbandy,
S.
, and
Kumar,
S.
, 2013, “
Fractional-Order Legendre Functions for Solving Fractional-Order Differential Equations,” Appl. Math. Modell.,
37(7), pp. 5498–5510.

[CrossRef]
Szego,
G.
, 1975, Orthogonal Polynomials, 4th ed.,
American Mathematical Society,
Providence, RI.

Conte,
S. D.
, and
de Boor,
C.
, 1981, Elementary Numerical Analysis,
McGraw-Hill,
New York.

Bellman,
R. E.
, and
Kalaba,
R. E.
, 1965, Quasilinearization and Nonlinear Boundary-Value Problems,
Elsevier,
New York.

Kalaba,
R.
, 1957, “
On Nonlinear Differential Equations, the Maximum Operation and Monotone Convergence,” RAND Corporation, Santa Monica, CA.

Parand,
K.
,
Ghasemi,
M.
,
Rezazadeh,
S.
,
Peiravi,
A.
,
Ghorbanpour,
A.
, and
Tavakoli Golpaygani,
A.
, 2010, “
Quasilinearization Approach for Solving Volterra's Population Model,” Appl. Comput. Math.,
9(1), pp. 95–103.

Krivec,
R.
, and
Mandelzweig,
V. B.
, 2008, “
Quasilinearization Approach to Computations With Singular Potentials,” Comput. Phys. Commun.,
179(12), pp. 865–867.

[CrossRef]
Rezaei,
A.
,
Baharifard,
F.
, and
Parand,
K.
, 2011, “
Quasilinearization-Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem,” Int. J. Comput. Electr. Autom. Control Info. Eng.,
5(2), pp. 194–201.

Mandelzweig,
V. B.
, and
Tabakin,
F.
, 2001, “
Quasilinearization Approach to Nonlinear Problems in Physics With Application to Nonlinear ODEs,” Comput. Phys. Commun.,
141(2), pp. 268–281.

[CrossRef]
Boyd,
J. P.
, 2000, Chebyshev and Fourier Spectral Methods, 2nd ed.,
Dover Publications,
Mineola, NY.

Canuto,
C.
,
Hussaini,
M. Y.
,
Quarteroni,
A.
, and
Zang,
T. A.
, 1987, Spectral Methods in Fluid Dynamic,
Springer-Verlag,
New York.

Guo,
B. Y.
, 1998, Spectral Methods and Their Applications,
World Scientific Publishing,
Singapore.

[CrossRef]