Research Papers

A Multiscale Formulation for Reducing Computation Time in Atomistic Simulations

[+] Author and Article Information
Ashley Guy

The Robotics, Biomechanics, and
Dynamic Systems Laboratory,
Department of Mechanical and
Aerospace Engineering,
University of Texas at Arlington,
Arlington, TX 76019
e-mail: ashley.guy@uta.edu

Alan Bowling

The Robotics, Biomechanics, and
Dynamic Systems Laboratory,
Department of Mechanical and
Aerospace Engineering,
University of Texas at Arlington,
Arlington, TX 76019
e-mail: bowling@uta.edu

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received September 20, 2017; final manuscript received February 27, 2018; published online March 23, 2018. Assoc. Editor: Zdravko Terze.

J. Comput. Nonlinear Dynam 13(5), 051002 (Mar 23, 2018) (9 pages) Paper No: CND-17-1426; doi: 10.1115/1.4039489 History: Received September 20, 2017; Revised February 27, 2018

Molecular dynamics simulations require significant computational resources to generate modest time evolutions. Large active forces lead to large accelerations, requiring subfemtosecond integration time steps to capture the resultant high-frequency vibrations. It is often necessary to combine these fast dynamics with larger scale phenomena, creating a multiscale problem. A multiscale method has been previously shown to greatly reduce the time required to simulate systems in the continuum regime. A new multiscale formulation is proposed to extend the continuum formulation to the atomistic scale. A canonical ensemble model is defined using a modified Nóse–Hoover thermostat to maintain the constant temperature constraint. Results show a significant reduction in computation time mediated by larger allowable integration time steps.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Lindorff-Larsen, K. , Piana, S. , Dror, R. O. , and Shaw, D. E. , 2011, “How Fast-Folding Proteins Fold,” Science, 334(6055), pp. 517–520. [CrossRef] [PubMed]
Nickolls, J. , Buck, I. , Garland, M. , and Skadron, K. , 2008, “Scalable Parallel Programming With Cuda,” ACM Q., 6(2), pp. 40–53. [CrossRef]
Stone, J. E. , Gohara, D. , and Shi, G. , 2010, “OpenCL: A Parallel Programming Standard for Heterogenous Computing Systems,” IEEE Comput. Sci. Eng., 12(3), pp. 66–73. [CrossRef]
Meagher, D. , 1980, “Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-d Objects by Computer,” Rensselaer Polytechnic Institute, Troy, NY, Technical Report No. IPL-TR-80-111.
Liu, W. , Schmidt, B. , Voss, G. , and Muller-Wittig, W. , 2008, “Accelerating Molecular Dynamics Simulations Using Graphics Processing Units With Cuda,” Comput. Phys. Commun., 179(9), pp. 634–641. [CrossRef]
Anderson, J. A. , Lorenz, C. D. , and Travesset, A. , 2008, “General Purpose Molecular Dynamics Simulations Fully Implemented on Graphics Processing Units,” J. Comput. Phys., 227(10), pp. 5342–5359. [CrossRef]
Jain, A. , Vaidehi, N. , and Rodriguez, G. A. , 1993, “A Fast Recursive Algorithm for Molecular Dynamics Simulation,” J. Comput. Phys., 106(2), pp. 258–268. [CrossRef]
Featherstone, R. , 1999, “A Divide-and-Conquer Articulated-Body Algorithm for Parallel o(Log(n)) Calculation of Rigid-Body-Dynamics—Part 1: Basic Algorithm,” Int. J. Rob. Res., 18(9), pp. 867–875. [CrossRef]
Chun, H. M. , Padilla, C. E. , Chin, D. N. , Watanabe, M. , Karlov, V. I. , Alper, H. E. , Soosaar, K. , Blair, K. B. , Becker, O. M. , Caves, L. S. D. , Nagle, R. , Haney, D. N. , and Farmer, B. L. , 2000, “MBO(N)D: A Multibody Method for Long-Time Molecular Dynamics Simulations,” J. Comp. Chem., 21(3), pp. 159–184. [CrossRef]
Redon, S. , and Lin, M. C. , 2006, “An Efficient, Error-Bounded Approximation Algorithm for Simulating Quasi-Statics of Complex Linkages,” Comput. Aided Des., 38(4), pp. 300–314. [CrossRef]
Poursina, M. , Bhalerao, K. D. , Flores, S. C. , Anderson, K. S. , and Laederach, A. , 2011, “Strategies for Articulated Multibody-Based Adaptive Coarse Grain Simulation of RNA,” Method Enzymol., 487, pp. 73–98. [CrossRef]
Balaraman, G. S. , Park, I.-H. , Jain, A. , and Vaidehi, N. , 2011, “Folding of Small Proteins Using Constrained Molecular Dynamics,” J. Phys. Chem., 115(23), pp. 7588–7596. [CrossRef]
Gangupomu, V. K. , Wagner, J. R. , Park, I.-H. , Jain, A. , and Vaidehi, N. , 2013, “Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations,” Biophys. J., 104(9), pp. 1999–2008. [CrossRef] [PubMed]
Malczyk, P. , and Fraczek, J. , 2014, “Molecular Dynamics Simulation of Simple Polymer Chain Formation Using Divide and Conquer Algorithm Based on the Augmented Lagrangian Method,” Proc. Inst. Mech. Eng. K, 229(2), pp. 116–131.
Deserno, M. , and Holm, C. , 1998, “How to Mesh Up Ewald Sums—I: A Theoretical and Numerical Comparison of Various Particle Mesh Routines,” J. Chem. Phys., 109(18), pp. 7678–7693. [CrossRef]
Poursina, M. , and Anderson, K. S. , 2014, “An Improved Fast Multipole Method for Electrostatic Potential Calculations in a Class of Coarse-Grained Molecular Simulations,” J. Comput. Phys., 270, pp. 613–633. [CrossRef]
Laflin, J. , and Anderson, K. S. , 2015, “A Multibody Approach for Computing Long-Range Forces Between Rigid-Bodies Using Multipole Expansions,” J. Mech. Sci. Technol., 29(7), pp. 2671–2676. [CrossRef]
Nielson, S. O. , Lopex, C. F. , Srinivas, G. , and Klein, M. L. , 2004, “Coarse Grain Models and the Computer Simulation of Soft Materials,” J. Phys. Condens. Matter, 16(15), p. R481. [CrossRef]
Shih, A. Y. , Freddolino, P. L. , Arkhipov, A. , and Schulten, K. , 2007, “Assembly of Lipoprotein Particles Revealed by Coarse-Grained Molecular Dynamics Simulations,” J. Struct. Biol., 157(3), pp. 579–592. [CrossRef] [PubMed]
Martinetz, T. , and Schulten, K. , 1994, “Topology Representing Networks,” Neural Networks, 7(3), pp. 507–522. [CrossRef]
Mukherjee, R. M. , and Anderson, K. S. , 2007, “Efficient Methodology for Multibody Simulations With Discontinuous Changes in System Definition,” Multibody Syst. Dyn., 18(2), pp. 145–168. [CrossRef]
Henzler-Wildman, K. A. , Lei, M. , Thai, V. , Kerns, S. J. , Karplus, M. , and Kern, D. , 2007, “A Hierarchy of Timescales in Protein Dynamics is Linked to Enzyme Catalysis,” Nature, 450(7171), pp. 913–916. [CrossRef] [PubMed]
Smith, G. D. , Bedrov, D. , Li, L. , and Byutner, O. , 2002, “A Molecular Dynamics Simulation Study of the Viscoelastic Properties of Polymer Nanocomposites,” J. Chem. Phys., 117(20), pp. 9478–9489. [CrossRef]
Kremer, K. , and Muller-Plathe, F. , 2002, “Multiscale Simulation in Polymer Science,” Mol. Simul., 28(8–9), pp. 729–750. [CrossRef]
Zeng, Q. H. , Yu, A. B. , and Lu, G. Q. , 2008, “Multiscale Modeling and Simulation of Polymer Nanocomposites,” Prog. Polym. Sci., 33(2), pp. 191–269. [CrossRef]
Broughton, J. Q. , Abraham, F. F. , Bernstein, N. , and Kaxiras, E. , 1999, “Concurrent Coupling of Length Scales: Methodology and Application,” Phys. Rev. B, 60(4), pp. 2391–2403. [CrossRef]
Lu, G. , Tadmor, E. B. , and Kaxiras, E. , 2006, “From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals,” Phys. Rev. B, 73(2), p. 024108. [CrossRef]
Haghshenas-Jaryani, M. , Black, B. , Ghaffari, S. , Drake, J. , Bowling, A. , and Mohanty, S. , 2014, “Dynamics of Microscopic Objects in Optical Tweezers: Experimental Determination of Underdamped Regime and Numerical Simulation Using Multiscale Analysis,” Nonlinear Dyn., 76(2), pp. 1013–1030. [CrossRef]
Palanki, A. , and Bowling, A. , 2015, “Dynamic Model of Estrogen Docking Using Multiscale Analysis,” Nonlinear Dyn., 79(2), pp. 1519–1534. [CrossRef]
Haghshenas-Jaryani, M. , and Bowling, A. , 2015, “Modeling Flexibility in Myosin V Using a Multiscale Articulated Multi-Rigid Body Approach,” ASME J. Comput. Nonlin. Dyn., 10(1), p. 011015. [CrossRef]
Guy, A. , and Bowling, A. , 2016, “Multiscale Modeling of Ebola Virus Glycoprotein,” Nanoengineering for Medicine and Biology Conference (NEMB), Houston, TX, Feb. 21–24.
Andersen, H. C. , 1980, “Molecular Dynamics Simulations at Constant Pressure and/or Temperature,” J. Chem. Phys., 72(4), pp. 2384–2393. [CrossRef]
Berendsen, H. J. C. , Postma, J. P. M. , van Gunsteren, W. F. , DiNola, A. , and Haak, J. R. , 1984, “Molecular Dynamics With Coupling to an External Bath,” J. Chem. Phys., 81(8), p. 3684. [CrossRef]
Bussi, G. , Donadio, D. , and Parrinello, M. , 2007, “Canonical Sampling Through Velocity Scaling,” J. Chem. Phys., 126(1), p. 014101. [CrossRef] [PubMed]
Travis, K. P. , and Braga, C. , 2008, “Configurational Temperature Control for Atomic and Molecular Systems,” J. Chem. Phys., 128(1), p. 014111. [CrossRef] [PubMed]
Patra, P. K. , and Bhattacharya, B. , 2014, “A Deterministic Thermostat for Controlling Temperature Using All Degrees of Freedom,” J. Chem. Phys., 140(6), p. 064106. [CrossRef] [PubMed]
Nóse, S. , 1984, “A Molecular Dynamics Method for Simulations in the Canonical Ensemble,” Mol. Phys., 52, pp. 255–268. [CrossRef]
Hoover, W. G. , 1985, “Canonical Dynamics: Equilibrium Phase-Space Distributions,” Phys. Rev. A, 31(3), pp. 1695–1697. [CrossRef]
Vaidehi, N. , Jain, A. , and Goddard, W. A. , 1996, “Constant Temperature Constrained Molecular Dynamics: The Newton-Euler Inverse Mass Operator Method,” J. Phys. Chem., 100(25), pp. 10508–10517. [CrossRef]
Poursina, M. , and Anderson, K. S. , 2013, “Canonical Ensemble Simulation of Biopolymers Using a Coarse-Grained Articulated Generalized Divide-and-Conquer Scheme,” Comput. Phys. Commun., 184(3), pp. 652–660. [CrossRef]
Gamboa, G. U. , Vasquez-Perez, J. M. , Calaminici, P. , and Koster, A. M. , 2010, “Influence of Thermostats on the Calculations of Heat Capacities From Born-Oppenheimer Molecular Dynamics Simulations,” Int. J. Quantum Chem., 110(12), pp. 2172–2178. [CrossRef]
Martyna, G. J. , Klein, M. L. , and Tuckerman, M. , 1992, “Nóse-Hoover Chains: The Canonical Ensemble Via Continuous Dynamics,” J. Chem. Phys., 97(4), p. 2635. [CrossRef]
Nagaraj, Y. , 2014, “Modeling and Simulation of Nanofluid for Heat Storage,” M.S. thesis, University of Texas at Arlington, Arlington, TX. https://uta-ir.tdl.org/uta-ir/handle/10106/24918
Guy, A. , and Bowling, A. , 2017, “Modification of Nóse-Hoover Thermostat to Improve Temperature Response in Molecular Simulations,” ASME J. Comput. Nonlinear Dyn., 12(3), p. 031019. [CrossRef]
Bowling, A. , and Haghshenas-Jaryani, M. , 2015, “A Multiscale Modeling Approach for Biomolecular Systems,” Multibody Syst. Dyn., 33(4), pp. 333–365. [CrossRef]
Guennebaud, G. , and Jacob, B. , 2016, “Eigen v3.3.,” Eigen, http://eigen.tuxfamily.org/index.php?title=3.3


Grahic Jump Location
Fig. 1

Initial positions. Smaller bodies are sodium and potassium cations. Larger bodies are nitrate anions. The large central body is the silicon dioxide cluster.

Grahic Jump Location
Fig. 3

Temperature response for the three simulations

Grahic Jump Location
Fig. 4

System energy using the original thermostat

Grahic Jump Location
Fig. 5

System energy using the unscaled modified thermostat

Grahic Jump Location
Fig. 6

System energy using the scaled modified thermostat

Grahic Jump Location
Fig. 7

Phase plots for all three simulated systems

Grahic Jump Location
Fig. 8

Phase plot for the unscaled modified thermostat



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In