Leonov,
G. A.
,
Kuznetsov,
N. V.
, and
Vagaitsev,
V. I.
, 2011, “
Localization of Hidden Chua's Attractors,” Phys. Lett. A,
375(23), pp. 2230–2233.

[CrossRef]
Borah,
M.
, and
Roy,
B. K.
, 2017, “
An Enhanced Multi-Wing Fractional-Order Chaotic System With Coexisting Attractors and Switching Hybrid Synchronisation With Its Nonautonomous Counterpart,” Chaos, Solitons Fractals,
102, pp. 372–386.

[CrossRef]
Borah,
M.
, and
Roy,
B. K.
, 2017, “
Hidden Attractor Dynamics of a Novel Non-Equilibrium Fractional-Order Chaotic System and Its Synchronisation Control,” IEEE Indian Control Conference (ICC), Guwahati, India, Jan. 4–6, pp. 450–455.

Wei,
Z.
,
Sprott,
J. C.
, and
Chen,
H.
, 2015, “
Elementary Quadratic Chaotic Flows With a Single Non-Hyperbolic Equilibrium,” Phys. Lett. A,
379(37), pp. 2184–2187.

[CrossRef]
Borah,
M.
,
Roy,
P.
, and
Roy,
B. K.
, 2016, “
Synchronisation Control of a Novel Fractional-Order Chaotic System With Hidden Attractor,” IEEE Students' Technology Symposium (TechSym), Kharagpur, India, Sept. 30–Oct. 2, pp. 163–168.

Jafari,
S.
, and
Sprott,
J. C.
, 2013, “
Simple Chaotic Flows With a Line Equilibrium,” Chaos, Solitons Frac,
57, pp. 79–84.

[CrossRef]
Wei,
Z.
,
Zhang,
W.
, and
Wang,
Z.
, 2015, “
Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System,” Int. J. Bifurcation Chaos,
25(2), p. 1550028.

[CrossRef]
Danca,
M. F.
, 2017, “
Hidden Chaotic Attractors in Fractional-Order Systems,” Nonlinear Dyn.,
89(1), pp. 577–586.

[CrossRef]
Borah,
M.
, and
Roy,
B. K.
, 2017, “
Can Fractional-Order Coexisting Attractors Undergo a Rotational Phenomenon?,” ISA Trans., in press.

Wei,
Z.
,
Moroz,
I.
,
Sprott,
J. C.
,
Akgul,
A.
, and
Zhang,
W.
, 2017, “
Hidden Hyperchaos and Electronic Circuit Application in a 5D Self-Exciting Homopolar Disc Dynamo,” Chaos,
27(3), p. 033101.

[CrossRef] [PubMed]
Bao,
B. C.
,
Bao,
H.
,
Wang,
N.
,
Chen,
M.
, and
Xu,
Q.
, 2017, “
Hidden Extreme Multistability in Memristive Hyperchaotic System,” Chaos, Solitons Fractals,
94, pp. 102–111.

[CrossRef]
Bao,
B.
,
Jiang,
T.
,
Xu,
Q.
,
Chen,
M.
,
Wu,
H.
, and
Hu,
Y.
, 2016, “
Coexisting Infinitely Many Attractors in Active Band-Pass Filter-Based Memristive Circuit,” Nonlinear Dyn.,
86(3), pp. 1711–1723.

[CrossRef]
Sharma,
P. R.
,
Shrimali,
M. D.
,
Prasad,
A.
, and
Feudel,
U.
, 2013, “
Controlling Bistability by Linear Augmentation,” Phys. Lett. A,
377(37), pp. 2329–2332.

[CrossRef]
Pham,
V. T.
,
Volos,
C.
,
Jafari,
S.
, and
Kapitaniak,
T.
, 2017, “
Coexistence of Hidden Chaotic Attractors in a Novel No-Equilibrium System,” Nonlinear Dyn.,
87(3), pp. 2001–2010.

[CrossRef]
Wei,
Z.
,
Yu,
P.
,
Zhang,
W.
, and
Yao,
M.
, 2015, “
Study of Hidden Attractors, Multiple Limit Cycles From Hopf Bifurcation and Boundedness of Motion in the Generalized Hyperchaotic Rabinovich System,” Nonlinear Dyn.,
82(1–2), pp. 131–141.

[CrossRef]
Wei,
Z.
, and
Zhang,
W.
, 2014, “
Hidden Hyperchaotic Attractors in a Modified Lorenz–Stenflo System With Only One Stable Equilibrium,” Int. J. Bifurcation Chaos,
24(10), p. 1450127.

[CrossRef]
Ojoniyi,
O. S.
, and
Njah,
A. N.
, 2016, “
A 5D Hyperchaotic Sprott B System With Coexisting Hidden Attractors,” Chaos, Solitons Fractals,
87, pp. 172–181.

[CrossRef]
Baleanu,
D.
,
Machado,
J. A. T.
, and
Luo,
A. C. J.
, 2012, Fractional Dynamics and Control,
Springer,
New York.

[CrossRef]
Yang,
J. H.
,
Sanjuan,
M. A. F.
, and
Liu,
H. G.
, 2017, “
Enhancing the Weak Signal With Arbitrary High-Frequency by Vibrational Resonance in Fractional-Order Duffing Oscillators,” ASME J. Comput. Nonlinear Dyn.,
12(5), p. 051011.

[CrossRef]
Ahmadian,
A.
,
Salahshour,
S.
,
Baleanu,
D.
,
Amirkhani,
H.
, and
Yunus,
R.
, 2015, “
Tau Method for the Numerical Solution of a Fuzzy Fractional Kinetic Model and Its Application to the Oil Palm Frond as Apromising Source of Xylose,” J. Comput. Phys.,
294, pp. 562–584.

[CrossRef]
Borah,
M.
, and
Roy,
B. K.
, 2016, “
Design of Fractional-Order Hyperchaotic Systems With Maximum Number of Positive Lyapunov Exponents and Their Antisynchronisation Using Adaptive Control,” Int. J. Control, in press.

Tian,
X.
, and
Fei,
S.
, 2015, “
Adaptive Control for Fractional-Order Micro-Electro-Mechanical Resonator With Nonsymmetric Dead-Zone Input,” ASME J. Comput. Nonlinear Dyn.,
10(6), p. 061022.

[CrossRef]
Hu,
W.
,
Ding,
D.
, and
Wang,
N.
, 2017, “
Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System,” ASME J. Comput. Nonlinear Dyn.,
12(4), p. 041003.

[CrossRef]
Borah,
M.
, and
Roy,
B. K.
, 2017, “
Dynamics of the Fractional-Order Chaotic PMSG, Its Stabilisation Using Predictive Control and Circuit Validation,” IET Electric Power Appl.,
11(5), pp. 707–716.

[CrossRef]
Jafarian,
A.
,
Mokhtarpour,
M.
, and
Baleanu,
D.
, 2017, “
Artificial Neural Network Approach for a Class of Fractional Ordinary Differential Equation,” ASME J. Comput. Appl. Math. Neural Comput. Appl.,
28(4), pp. 765–773.

[CrossRef]
Borah,
M.
,
Roy,
P.
, and
Roy,
B. K.
, 2018, “
Enhanced Performance in Trajectory Tracking of a Ball and Plate System Using Fractional Order Controller,” IETE J. Res.,
64(1), pp. 76–86.

Arshad,
S.
,
Baleanu,
D.
,
Bu,
W.
, and
Tang,
Y.
, 2017, “
Effects of HIV Infection on CD4+ T-Cell Population Based on a Fractional-Order Model,” Adv. Difference Equations,
2017(1), p. 92.

[CrossRef]
Pinto,
C. M. A.
, and
Carvalho,
A. R. M.
, 2017, “
The Role of Synaptic Transmission in a HIV Model With Memory,” Appl. Math. Comput.,
292, pp. 76–95.

Pinto,
C. M. A.
, 2017, “
Persistence of Low Levels of Plasma Viremia and of the Latent Reservoir in Patients Under ART: A Fractional-Order Approach,” Commun. Nonlinear Sci. Numer. Simul.,
43, pp. 251–260.

[CrossRef]
Borah,
M.
, and
Roy,
B. K.
, 2017, “
Switching Synchronisation Control Between Integer-Order and Fractional-Order Dynamics of a Chaotic System,” IEEE Indian Control Conference (ICC), Guwahati, India, Jan. 4–6, pp. 456–461.

Chen,
D.
, and
Liu,
W.
, 2016, “
Chaotic Behavior and Its Control in a Fractional-Order Energy Demand–Supply System,” ASME J. Comput. Nonlinear Dyn.,
11(6), p. 061010.

[CrossRef]
Pinto,
C. M. A.
, and
Carvalho,
A. R. M.
, 2015, “Fractional Complex-Order Model HIV Infection with Drug Resistance During Therapy,” J. Vib. Control,
22(9), pp. 2222–2239.

[CrossRef]
Sprott,
J. C.
, 2011, “
A Proposed Standard for the Publication of New Chaotic Systems,” Int. J. Bifurcation Chaos,
21(9), pp. 2391–2394.

[CrossRef]
Petras,
I.
, 2011, “
Fractional-Order Systems,” Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation,
A. C. J. Luo
and
N. H. Ibragimov
, eds., Springer, Berlin, pp. 47–49.

Diethelm,
K.
,
Ford,
N. J.
, and
Freed,
A. D.
, 2002, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations,” Nonlinear Dyn.,
29, pp. 3–22.

[CrossRef]
Zhang,
C.
, and
Yu,
S.
, 2011, “
Generation of Multi-Wing Chaotic Attractor in Fractional Order System,” Chaos, Solitons Fractals,
44(10), pp. 845–850.

[CrossRef]
Daftardar-Gejji,
V.
,
Sukale,
Y.
, and
Bhalekar,
S.
, 2014, “
A New Predictor–Corrector Method for Fractional Differential Equations,” Appl. Math. Comput.,
244, pp. 158–182.

Wolf,
A.
,
Swift,
J. B.
,
Swinney,
H. L.
, and
Vastano,
J. A.
, 1985, “
Determining Lyapunov Exponents From a Time Series,” Phys. D,
16(3), pp. 285–317.

[CrossRef]
Podlubny,
I.
, 2002, “
Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation,” Fractional Calculus and Appl. Anal.,
5(4), pp. 367–386.

Sano,
M.
, and
Sawada,
Y.
, 1985, “
Measurement of the Lyapunov Spectrum From a Chaotic Time Series,” Phys. Rev. Lett.,
55(10), pp. 1082–1085.

[CrossRef] [PubMed]
Rosenstein,
M. T.
,
Collins,
J. J.
, and
De Luca,
C. J.
, 1993, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets,” Phys. D,
65(1–2), pp. 117–134.

[CrossRef]
Lü,
J.
,
Chen,
G.
, and
Cheng,
D.
, 2004, “
A New Chaotic System and Beyond: The Generalized Lorenz-like System,” Int. J. Bifurcation Chaos,
14(5), pp. 1507–1537.

[CrossRef]
Qi,
G.
,
Chen,
G.
, and
Zhang,
Y.
, 2008, “
On a New Asymmetric Chaotic System,” Chaos, Solitons Fractals,
37(2), pp. 409–423.

[CrossRef]
Liu,
Y.
,
Yang,
Q.
, and
Pang,
G.
, 2010, “
A Hyperchaotic System From the Rabinovich System,” J. Comput. Appl. Math.,
234(1), pp. 101–113.

[CrossRef]