Butcher,
J. C.
, 2016, Numerical Methods for Ordinary Differential Equations,
Wiley, Hoboken, NJ.

[CrossRef]
Zhao,
S.
, and
Wei,
G.-W.
, 2014, “
A Unified Discontinuous Galerkin Framework for Time Integration,” Math. Methods Appl. Sci.,
37(7), pp. 1042–1071.

[CrossRef] [PubMed]
Hirsch,
C.
, 2007, Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics,
Butterworth-Heinemann, Burlington, MA.

Masatsuka,
K.
, 2013, I Do like CFD, 2nd ed., Vol.
1,
Katate Masatsuka, Lulu, VA.

Calvo,
M.
,
Franco,
J.
, and
Rández,
L.
, 2003, “
Minimum Storage Runge-Kutta Schemes for Computational Acoustics,” Comput. Math. Appl.,
45(1–3), pp. 535–545.

[CrossRef]
Runge,
C.
, 1895, “
Über Die Numerische Auflösung Von Differentialgleichungen,” Math. Ann.,
46(2), pp. 167–178.

[CrossRef]
Fehlberg,
E.
, 1970, “
Klassische Runge-Kutta-Formeln Vierter Und Niedrigerer Ordnung Mit Schrittweiten-Kontrolle Und Ihre Anwendung Auf Waermeleitungsprobleme,” Computing,
6(1–2), pp. 61–71.

[CrossRef]
Dormand,
J. R.
, and
Prince,
P. J.
, 1980, “
A Family of Embedded Runge-Kutta Formulae,” J. Comput. Appl Math.,
6(1), pp. 19–26.

[CrossRef]
Shampine,
L. F.
, and
Reichelt,
M. W.
, 1997, “
The

Matlab ODE Suite,” SIAM J. Sci. Comput.,
18(1), pp. 1–22.

[CrossRef]
Zhong,
X.
, 1996, “
Additive Semi-Implicit Runge–Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows,” J. Comput. Phys.,
128(1), pp. 19–31.

[CrossRef]
Pareschi,
L.
, and
Russo,
G.
, 2005, “
Implicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems With Relaxation,” J. Sci. Comput.,
25(1–2), pp. 129–155.

Williamson,
J.
, 1980, “
Low-Storage Runge-Kutta Schemes,” J. Comput. Phys.,
35(1), pp. 48–56.

[CrossRef]
Carpenter,
M. H.
, and
Kennedy,
C. A.
, 1994, “
Fourth-Order 2N-Storage Runge-Kutta Schemes,” National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, Report No. NASA-TM-109112.

Hu,
F.
,
Hussaini,
M.
, and
Manthey,
J.
, 1996, “
Low-Dissipation and Low-Dispersion Runge–Kutta Schemes for Computational Acoustics,” J. Comput. Phys.,
124(1), pp. 177–191.

[CrossRef]
Verwer,
J. G.
, 1996, “
Explicit Runge-Kutta Methods for Parabolic Partial Differential Equations,” Appl. Numer. Math.,
22(1–3), pp. 359–379.

[CrossRef]
Cockburn,
B.
,
Lin,
S.-Y.
, and
Shu,
C.-W.
, 1989, “
Tvb Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws Iii: One-Dimensional Systems,” J. Comput. Phys.,
84(1), pp. 90–113.

[CrossRef]
Ketcheson,
D. I.
, 2008, “
Highly Efficient Strong Stability-Preserving Runge-Kutta Methods With Low-Storage Implementations,” SIAM J. Sci. Comput.,
30(4), pp. 2113–2136.

[CrossRef]
Bogey,
C.
, and
Bailly,
C.
, 2004, “
A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations,” J. Comput. Phys.,
194(1), pp. 194–214.

[CrossRef]
Appadu,
A. R.
, 2014, “
Optimized Low Dispersion and Low Dissipation Runge-Kutta Algorithms in Computational Aeroacoustics,” Appl. Math,
8(1), pp. 57–68.

Udwadia,
F. E.
, and
Farahani,
A.
, 2008, “
Accelerated Runge-Kutta Methods,” Discrete Dyn. Nat. Soc.,
2008, p. 790619.

Phohomsiri,
P.
, and
Udwadia,
F. E.
, 2004, “
Acceleration of Runge-Kutta Integration Schemes,” Discrete Dyn. Nat. Soc.,
2, pp. 307–314.

[CrossRef]
Neelan,
A. G.
, and
Nair,
M. T.
, 2016, “
Optimized Dispersion Relation Schemes for Spatial and Temporal Discretization,” International Conference on Trends in Technology and Engineering (ICTTE'16), Coimbatore, India, Mar. 25–26, pp. 4–7.

Rajpoot,
M. K.
,
Sengupta,
T. K.
, and
Dutt,
P. K.
, 2010, “
Optimal Time Advancing Dispersion Relation Preserving Schemes,” J. Comput. Phys.,
229(10), pp. 3623–3651.

[CrossRef]
Denaro,
F.
, 2005, “
Time-Accurate Intermediate Boundary Conditions for Large Eddy Simulations Based on Projection Methods,” Int. J. Numer. Methods Fluids,
48(8), pp. 869–908.

[CrossRef]
Neelan,
A. G.
,
Mandal,
A.
, and
De,
A.
, 2017, “
Simulation of Unsteady Wall-Jet in a Confined Geometry and Identification of Coherent Structures Using Proper Orthogonal Decomposition,” Fluid Mechanics and Fluid Power–Contemporary Research, A. K. Saha, D. Das, R. Srivastava, P. K. Panigrahi, and K. Muralidhar, eds.,
Springer, New Delhi, India, pp. 713–721.

[CrossRef]
Tai,
C.-H.
,
Sheu,
J.-H.
, and
Van Leer,
B.
, 1995, “
Optimal Multistage Schemes for Euler Equations With Residual Smoothing,” AIAA J.,
33(6), pp. 1008–1016.

[CrossRef]
Hoffmann,
K.
, and
Chiang,
S.
, 2000, Computational Fluid Dynamics, Vol. 2,
In Computational Fluid Dynamics. Engineering Education System, Wichita, KS.

[PubMed] [PubMed]
Neelan,
A. G.
, and
Nair,
M. T.
, 2016, “
Stability Preserving Runge–Kutta Method Using Genetic Algorithm,” Sixth International Congress on Computational Mechanics and Simulation, Mumbai, India, June 27–July 1, pp. 925–928.

Kinnmark,
I. P.
, and
Gray,
W. G.
, 1984, “
One Step Integration Methods of Third-Fourth-Order Accuracy With Large Hyperbolic Stability Limits,” Math. Comput. Simul.,
26(3), pp. 181–188.

[CrossRef]
Stanescu,
D.
, and
Habashi,
W.
, 1998, “
2n-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics,” J. Comput. Phys.,
143(2), pp. 674–681.

[CrossRef]
Mead,
J.
, and
Renaut,
R.
, 1999, “
Optimal Runge–Kutta Methods for First-Order Pseudospectral Operators,” J. Comput. Phys.,
152(1), pp. 404–419.

[CrossRef]
Van der Houwen,
P.
, 1996, “
The Development of Runge-Kutta Methods for Partial Differential Equations,” Appl. Numer. Math.,
20(3), pp. 261–272.

[CrossRef]
Sengupta,
T. K.
,
Sengupta,
A.
, and
Saurabh,
K.
, 2017, “
Global Spectral Analysis of Multi-Level Time Integration Schemes: Numerical Properties for Error Analysis,” Appl. Math. Comput.,
304, pp. 41–57.

Gottlieb,
S.
, and
Gottlieb,
L.-A. J.
, 2003, “
Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators,” J. Sci. Comput.,
18(1), pp. 83–109.

[CrossRef]
Toro,
E. F.
, 1999, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Applied Mechanics: Researchers and Students, Springer, London.

[CrossRef]
Godunov,
S. K.
, 1959, “
A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics,” Matematicheskii Sb.,
89(3), pp. 271–306.

Lax,
P. D.
, and
Richtmyer,
R. D.
, 1956, “
Survey of the Stability of Linear Finite Difference Equations,” Commun. Pure Appl. Math.,
9(2), pp. 267–293.

[CrossRef]
Deb,
K.
,
Pratap,
A.
,
Agarwal,
S.
, and
Meyarivan,
T.
, 2002, “
A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-II,” IEEE Trans Evolut. Comput.,
6(2), pp. 182–197.

[CrossRef]
Lipowski,
A.
, and
Lipowska,
D.
, 2012, “
Roulette-Wheel Selection via Stochastic Acceptance,” Phys. A: Stat. Mech. Appl.,
391(6), pp. 2193–2196.

[CrossRef]
Baluja,
S.
, and
Caruana,
R.
, 1995, “
Removing the Genetics From the Standard Genetic Algorithm,” 12th International Conference on Machine Learning, Tahoe City, CA, July 9–12, pp. 38–46.

Gottlieb,
S.
, and
Shu,
C.-W.
, 1998, “
Total Variation Diminishing Runge-Kutta Schemes,” Math. Comput. Am. Math. Soc.,
67(221), pp. 73–85.

[CrossRef]
Tselios,
K.
, and
Simos,
T. E.
, 2005, “
Runge–Kutta Methods With Minimal Dispersion and Dissipation for Problems Arising From Computational Acoustics,” J. Comput. Appl. Math.,
175(1), pp. 173–181.

[CrossRef]
Sod,
G. A.
, 1978, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws,” J. Comput. Phys.,
27(1), pp. 1–31.

[CrossRef]
Blazek,
J.
, 2015, Computational Fluid Dynamics: Principles and Applications, No. v. 1 in Computational Fluid Dynamics: Principles and Applications,
Butterworth-Heinemann, Elsevier, Kidlington.

Johnsen,
E.
, and
Colonius,
T.
, 2006, “
Implementation of Weno Schemes in Compressible Multicomponent Flow Problems,” J. Comput. Phys.,
219(2), pp. 715–732.

[CrossRef]
Roe,
P. L.
, 1981, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys.,
43(2), pp. 357–372.

[CrossRef]
Balsara,
D. S.
, and
Shu,
C.-W.
, 2000, “
Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes With Increasingly High Order of Accuracy,” J. Comput. Phys.,
160(2), pp. 405–452.

[CrossRef]
Martín,
M. P.
,
Taylor,
E. M.
,
Wu,
M.
, and
Weirs,
V. G.
, 2006, “
A Bandwidth-Optimized Weno Scheme for the Effective Direct Numerical Simulation of Compressible Turbulence,” J. Comput. Phys.,
220(1), pp. 270–289.

[CrossRef]
Harten,
A.
, 1983, “
High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys.,
49(3), pp. 357–393.

[CrossRef]