Research Papers

Hyperbolic Runge–Kutta Method Using Evolutionary Algorithm

[+] Author and Article Information
A. Arun Govind Neelan

Department of Aerospace Engineering,
Indian Institute of
Space Science and Technology,
Thiruvananthapuram 695547, Kerala, India
e-mail: arungovindneelan@gmail.com

Manoj T. Nair

Department of Aerospace Engineering,
Indian Institute of
Space Science and Technology,
Thiruvananthapuram 695547, Kerala, India
e-mail: manojtnair.iist@gmail.com

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received November 29, 2017; final manuscript received June 20, 2018; published online August 1, 2018. Assoc. Editor: Firdaus Udwadia.

J. Comput. Nonlinear Dynam 13(10), 101003 (Aug 01, 2018) (7 pages) Paper No: CND-17-1527; doi: 10.1115/1.4040708 History: Received November 29, 2017; Revised June 20, 2018

A family of Runge–Kutta (RK) methods designed for better stability is proposed. Authors have optimized the stability of RK method by increasing the stability region by trading some of the higher order terms in the Taylor series. For flow involving shocks, compromising a few higher order terms will not affect convergence rate that is justified with an example. Though this kind of analysis began about three decades ago, most of the papers dealt with classical optimization and ended up in relatively nonoptimal values. Here, authors have overcome that by using evolutionary algorithm (EA), the result is refined using multisection method (MSM). The schemes designed based on this procedure have better stability than the classical RK methods, strong stability RK methods (SSPRK), and low dispersive and dissipative RK methods (LDDRK) of the same number of stages. Authors have tested the schemes on a variety of test cases and found some significant improvement.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Butcher, J. C. , 2016, Numerical Methods for Ordinary Differential Equations, Wiley, Hoboken, NJ. [CrossRef]
Zhao, S. , and Wei, G.-W. , 2014, “ A Unified Discontinuous Galerkin Framework for Time Integration,” Math. Methods Appl. Sci., 37(7), pp. 1042–1071. [CrossRef] [PubMed]
Hirsch, C. , 2007, Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, Butterworth-Heinemann, Burlington, MA.
Masatsuka, K. , 2013, I Do like CFD, 2nd ed., Vol. 1, Katate Masatsuka, Lulu, VA.
Calvo, M. , Franco, J. , and Rández, L. , 2003, “ Minimum Storage Runge-Kutta Schemes for Computational Acoustics,” Comput. Math. Appl., 45(1–3), pp. 535–545. [CrossRef]
Runge, C. , 1895, “ Über Die Numerische Auflösung Von Differentialgleichungen,” Math. Ann., 46(2), pp. 167–178. [CrossRef]
Fehlberg, E. , 1970, “ Klassische Runge-Kutta-Formeln Vierter Und Niedrigerer Ordnung Mit Schrittweiten-Kontrolle Und Ihre Anwendung Auf Waermeleitungsprobleme,” Computing, 6(1–2), pp. 61–71. [CrossRef]
Dormand, J. R. , and Prince, P. J. , 1980, “ A Family of Embedded Runge-Kutta Formulae,” J. Comput. Appl Math., 6(1), pp. 19–26. [CrossRef]
Shampine, L. F. , and Reichelt, M. W. , 1997, “ The Matlab ODE Suite,” SIAM J. Sci. Comput., 18(1), pp. 1–22. [CrossRef]
Zhong, X. , 1996, “ Additive Semi-Implicit Runge–Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows,” J. Comput. Phys., 128(1), pp. 19–31. [CrossRef]
Pareschi, L. , and Russo, G. , 2005, “ Implicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems With Relaxation,” J. Sci. Comput., 25(1–2), pp. 129–155.
Williamson, J. , 1980, “ Low-Storage Runge-Kutta Schemes,” J. Comput. Phys., 35(1), pp. 48–56. [CrossRef]
Carpenter, M. H. , and Kennedy, C. A. , 1994, “ Fourth-Order 2N-Storage Runge-Kutta Schemes,” National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, Report No. NASA-TM-109112.
Hu, F. , Hussaini, M. , and Manthey, J. , 1996, “ Low-Dissipation and Low-Dispersion Runge–Kutta Schemes for Computational Acoustics,” J. Comput. Phys., 124(1), pp. 177–191. [CrossRef]
Verwer, J. G. , 1996, “ Explicit Runge-Kutta Methods for Parabolic Partial Differential Equations,” Appl. Numer. Math., 22(1–3), pp. 359–379. [CrossRef]
Cockburn, B. , Lin, S.-Y. , and Shu, C.-W. , 1989, “ Tvb Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws Iii: One-Dimensional Systems,” J. Comput. Phys., 84(1), pp. 90–113. [CrossRef]
Ketcheson, D. I. , 2008, “ Highly Efficient Strong Stability-Preserving Runge-Kutta Methods With Low-Storage Implementations,” SIAM J. Sci. Comput., 30(4), pp. 2113–2136. [CrossRef]
Bogey, C. , and Bailly, C. , 2004, “ A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations,” J. Comput. Phys., 194(1), pp. 194–214. [CrossRef]
Appadu, A. R. , 2014, “ Optimized Low Dispersion and Low Dissipation Runge-Kutta Algorithms in Computational Aeroacoustics,” Appl. Math, 8(1), pp. 57–68.
Udwadia, F. E. , and Farahani, A. , 2008, “ Accelerated Runge-Kutta Methods,” Discrete Dyn. Nat. Soc., 2008, p. 790619.
Phohomsiri, P. , and Udwadia, F. E. , 2004, “ Acceleration of Runge-Kutta Integration Schemes,” Discrete Dyn. Nat. Soc., 2, pp. 307–314. [CrossRef]
Rabiei, F. , and Ismail, F. , 2012, “ Fifth-Order Improved Runge-Kutta Method for Solving Ordinary Differential Equation,” Aust. J. Basic Appl. Sci., 6(3), pp. 97–105. https://www.researchgate.net/publication/286203373_Fifth-order_improved_Runge-Kutta_method_with_reduced_number_of_function_evaluations
Neelan, A. G. , and Nair, M. T. , 2016, “ Optimized Dispersion Relation Schemes for Spatial and Temporal Discretization,” International Conference on Trends in Technology and Engineering (ICTTE'16), Coimbatore, India, Mar. 25–26, pp. 4–7.
Rajpoot, M. K. , Sengupta, T. K. , and Dutt, P. K. , 2010, “ Optimal Time Advancing Dispersion Relation Preserving Schemes,” J. Comput. Phys., 229(10), pp. 3623–3651. [CrossRef]
Denaro, F. , 2005, “ Time-Accurate Intermediate Boundary Conditions for Large Eddy Simulations Based on Projection Methods,” Int. J. Numer. Methods Fluids, 48(8), pp. 869–908. [CrossRef]
Neelan, A. G. , Mandal, A. , and De, A. , 2017, “ Simulation of Unsteady Wall-Jet in a Confined Geometry and Identification of Coherent Structures Using Proper Orthogonal Decomposition,” Fluid Mechanics and Fluid Power–Contemporary Research, A. K. Saha, D. Das, R. Srivastava, P. K. Panigrahi, and K. Muralidhar, eds., Springer, New Delhi, India, pp. 713–721. [CrossRef]
Tai, C.-H. , Sheu, J.-H. , and Van Leer, B. , 1995, “ Optimal Multistage Schemes for Euler Equations With Residual Smoothing,” AIAA J., 33(6), pp. 1008–1016. [CrossRef]
Hoffmann, K. , and Chiang, S. , 2000, Computational Fluid Dynamics, Vol. 2, In Computational Fluid Dynamics. Engineering Education System, Wichita, KS. [PubMed] [PubMed]
Neelan, A. G. , and Nair, M. T. , 2016, “ Stability Preserving Runge–Kutta Method Using Genetic Algorithm,” Sixth International Congress on Computational Mechanics and Simulation, Mumbai, India, June 27–July 1, pp. 925–928.
Kinnmark, I. P. , and Gray, W. G. , 1984, “ One Step Integration Methods of Third-Fourth-Order Accuracy With Large Hyperbolic Stability Limits,” Math. Comput. Simul., 26(3), pp. 181–188. [CrossRef]
Stanescu, D. , and Habashi, W. , 1998, “ 2n-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics,” J. Comput. Phys., 143(2), pp. 674–681. [CrossRef]
Mead, J. , and Renaut, R. , 1999, “ Optimal Runge–Kutta Methods for First-Order Pseudospectral Operators,” J. Comput. Phys., 152(1), pp. 404–419. [CrossRef]
Van der Houwen, P. , 1996, “ The Development of Runge-Kutta Methods for Partial Differential Equations,” Appl. Numer. Math., 20(3), pp. 261–272. [CrossRef]
Sengupta, T. K. , Sengupta, A. , and Saurabh, K. , 2017, “ Global Spectral Analysis of Multi-Level Time Integration Schemes: Numerical Properties for Error Analysis,” Appl. Math. Comput., 304, pp. 41–57.
Gottlieb, S. , and Gottlieb, L.-A. J. , 2003, “ Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators,” J. Sci. Comput., 18(1), pp. 83–109. [CrossRef]
Toro, E. F. , 1999, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Applied Mechanics: Researchers and Students, Springer, London. [CrossRef]
Godunov, S. K. , 1959, “ A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics,” Matematicheskii Sb., 89(3), pp. 271–306.
Lax, P. D. , and Richtmyer, R. D. , 1956, “ Survey of the Stability of Linear Finite Difference Equations,” Commun. Pure Appl. Math., 9(2), pp. 267–293. [CrossRef]
Deb, K. , Pratap, A. , Agarwal, S. , and Meyarivan, T. , 2002, “ A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-II,” IEEE Trans Evolut. Comput., 6(2), pp. 182–197. [CrossRef]
Lipowski, A. , and Lipowska, D. , 2012, “ Roulette-Wheel Selection via Stochastic Acceptance,” Phys. A: Stat. Mech. Appl., 391(6), pp. 2193–2196. [CrossRef]
Baluja, S. , and Caruana, R. , 1995, “ Removing the Genetics From the Standard Genetic Algorithm,” 12th International Conference on Machine Learning, Tahoe City, CA, July 9–12, pp. 38–46.
Gottlieb, S. , and Shu, C.-W. , 1998, “ Total Variation Diminishing Runge-Kutta Schemes,” Math. Comput. Am. Math. Soc., 67(221), pp. 73–85. [CrossRef]
Tselios, K. , and Simos, T. E. , 2005, “ Runge–Kutta Methods With Minimal Dispersion and Dissipation for Problems Arising From Computational Acoustics,” J. Comput. Appl. Math., 175(1), pp. 173–181. [CrossRef]
Sod, G. A. , 1978, “ A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws,” J. Comput. Phys., 27(1), pp. 1–31. [CrossRef]
Blazek, J. , 2015, Computational Fluid Dynamics: Principles and Applications, No. v. 1 in Computational Fluid Dynamics: Principles and Applications, Butterworth-Heinemann, Elsevier, Kidlington.
Johnsen, E. , and Colonius, T. , 2006, “ Implementation of Weno Schemes in Compressible Multicomponent Flow Problems,” J. Comput. Phys., 219(2), pp. 715–732. [CrossRef]
Roe, P. L. , 1981, “ Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys., 43(2), pp. 357–372. [CrossRef]
Balsara, D. S. , and Shu, C.-W. , 2000, “ Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes With Increasingly High Order of Accuracy,” J. Comput. Phys., 160(2), pp. 405–452. [CrossRef]
Martín, M. P. , Taylor, E. M. , Wu, M. , and Weirs, V. G. , 2006, “ A Bandwidth-Optimized Weno Scheme for the Effective Direct Numerical Simulation of Compressible Turbulence,” J. Comput. Phys., 220(1), pp. 270–289. [CrossRef]
Harten, A. , 1983, “ High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys., 49(3), pp. 357–393. [CrossRef]


Grahic Jump Location
Fig. 1

Stability plots of different methods: (a) stability plots of PRK and HRK methods and (b) stability plots of SSPRK and HRK methods

Grahic Jump Location
Fig. 2

Solution of shock tube problems: (a) velocity plot of Sod problem at T = 1.7 s and (b) pressure plot of Shu-Osher problem at T = 1.8 s

Grahic Jump Location
Fig. 3

Solution of supersonic flow past a diamond using HRK42: (a) density contour and (b) Mach number contour

Grahic Jump Location
Fig. 4

Convergence plot of spatial and temporal discretization: (a) temporal convergence (Emt) of different schemes and (b) spatial convergence (Ems) of different schemes



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In