Lighthill,
M. J.
, 1954, “
On Sound Generated Aerodynamically—II: Turbulence as a Source of Sound,” Proc. R. Soc. London A,
222(1148), pp. 1–32.

[CrossRef]
Bull,
M.
, 1996, “
Wall Pressure Fluctuations Beneath Turbulent Boundary Layers: Some Reflections on Forty Years of Research,” J. Sound Vib.,
190(3), pp. 299–315.

[CrossRef]
Tennekes,
H.
, and
Lumley,
J.
, 1972, A First Course in Turbulence,
Massachusetts Institute of Technology Press, Cambridge, MA.

Peltier,
L.
, and
Hambric,
S.
, 2007, “
Estimating Turbulent-Boundary-Layer Wall-Pressure Spectra From CFD RANS Solutions,” J. Fluids Struct.,
23(6), pp. 920–937.

[CrossRef]
Bonness,
W. K.
,
Fahnline,
J. B.
,
Lysak,
P. D.
, and
Shepherd,
M. R.
, 2017, “
Modal Forcing Functions for Structural Vibration From Turbulent Boundary Layer Flow,” J. Sound Vib.,
395, pp. 224–239.

[CrossRef]
Fishman,
G.
, 2013, Monte Carlo: Concepts, Algorithms, and Applications,
Springer Science & Business Media, New York.

Xiu,
D.
, 2010, Numerical Methods for Stochastic Computations: A Spectral Method Approach,
Princeton University Press,
Princeton, NJ.

Wan,
H.-P.
,
Mao,
Z.
,
Todd,
M. D.
, and
Ren,
W.-X.
, 2014, “
Analytical Uncertainty Quantification for Modal Frequencies With Structural Parameter Uncertainty Using a Gaussian Process Metamodel,” Eng. Struct.,
75, pp. 577–589.

[CrossRef]
Zhao,
Y.-G.
, and
Ono,
T.
, 2001, “
Moment Methods for Structural Reliability,” Struct. Saf.,
23(1), pp. 47–75.

[CrossRef]
Xiu,
D.
, and
Karniadakis,
G. E.
, 2002, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput.,
24(2), pp. 619–644.

[CrossRef]
Sepahvand,
K.
,
Marburg,
S.
, and
Hardtke,
H.-J.
, 2007, “
Numerical Solution of One-Dimensional Wave Equation With Stochastic Parameters Using Generalized Polynomial Chaos Expansion,” J. Comput. Acoust.,
15(4), pp. 579–593.

[CrossRef]
Ghanem,
R.
, and
Spanos,
P. D.
, 1993, “
A Stochastic Galerkin Expansion for Nonlinear Random Vibration Analysis,” Probab. Eng. Mech.,
8(3–4), pp. 255–264.

[CrossRef]
Sepahvand,
K.
, 2017, “
Stochastic Finite Element Method for Random Harmonic Analysis of Composite Plates With Uncertain Modal Damping Parameters,” J. Sound Vib.,
400, pp. 1–12.

[CrossRef]
Xiu,
D.
, and
Karniadakis,
G. E.
, 2003, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos,” J. Comput. Phys.,
187(1), pp. 137–167.

[CrossRef]
Zhang,
D.
, and
Lu,
Z.
, 2004, “
An Efficient, High-Order Perturbation Approach for Flow in Random Porous Media Via Karhunen–Loève and Polynomial Expansions,” J. Comput. Phys.,
194(2), pp. 773–794.

[CrossRef]
Rupert,
C. P.
, and
Miller,
C. T.
, 2007, “
An Analysis of Polynomial Chaos Approximations for Modeling Single-Fluid-Phase Flow in Porous Medium Systems,” J. Comput. Phys.,
226(2), pp. 2175–2205.

[CrossRef] [PubMed]
DeGennaro,
A. M.
,
Rowley,
C. W.
, and
Martinelli,
L.
, 2015, “
Uncertainty Quantification for Airfoil Icing Using Polynomial Chaos Expansions,” J. Aircr.,
52(5), pp. 1404–1411.

[CrossRef]
Zhang,
L.
,
Cui,
T.
, and
Liu,
H.
, 2009, “
A Set of Symmetric Quadrature Rules on Triangles and Tetrahedra,” J. Comput. Math.,
27(1), pp. 89–96.

https://www.jstor.org/stable/43693493?seq=1#page_scan_tab_contents
Witherden,
F. D.
, and
Vincent,
P. E.
, 2015, “
On the Identification of Symmetric Quadrature Rules for Finite Element Methods,” Comput. Math. Appl.,
69(10), pp. 1232–1241.

[CrossRef]
Papanicolopulos,
S.-A.
, 2016, “
Efficient Computation of Cubature Rules With Application to New Asymmetric Rules on the Triangle,” J. Comput. Appl. Math.,
304, pp. 73–83.

[CrossRef]
Papanicolopulos,
S.-A.
, 2016, “
New Fully Symmetric and Rotationally Symmetric Cubature Rules on the Triangle Using Minimal Orthonormal Bases,” J. Comput. Appl. Math.,
294, pp. 39–48.

[CrossRef]
Gratiet,
L. L.
,
Marelli,
S.
, and
Sudret,
B.
, 2016, “
Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes,” Handbook of Uncertainty Quantification, Springer, Cham, Switzerland, pp. 1–37.

Garcia-Cabrejo,
O.
, and
Valocchi,
A.
, 2014, “
Global Sensitivity Analysis for Multivariate Output Using Polynomial Chaos Expansion,” Reliab. Eng. Syst. Saf.,
126, pp. 25–36.

[CrossRef]
Hambric,
S. A.
,
Hwang,
Y. F.
, and
Bonness,
W. K.
, 2002, “
Vibrations of Plates With Clamped and Free Edges Excited by Highly Subsonic Turbulent Boundary Layer Flow,” ASME Paper No. IMECE2002-32224.

Hambric,
S.
,
Hwang,
Y.
, and
Bonness,
W.
, 2004, “
Vibrations of Plates With Clamped and Free Edges Excited by Low-Speed Turbulent Boundary Layer Flow,” J. Fluids Struct.,
19(1), pp. 93–110.

[CrossRef]
Chandiramani,
K.
, 1977, “
Vibration Response of Fluid-Loaded Structures to Low-Speed Flow Noise,” J. Acoust. Soc. Am.,
61(6), pp. 1460–1470.

[CrossRef]
Corcos,
G. M.
, 1963, “
Resolution of Pressure in Turbulence,” J. Acoust. Soc. Am.,
35(2), pp. 192–199.

[CrossRef]
Hwang,
Y.
, 1998, “
A Discrete Model of Turbulence Loading Function for Computation of Flow-Induced Vibration and Noise,” American Society of Mechanical Engineers, New York.

Hwang,
Y.
, and
Maidanik,
G.
, 1990, “
A Wavenumber Analysis of the Coupling of a Structural Mode and Flow Turbulence,” J. Sound Vib.,
142(1), pp. 135–152.

[CrossRef]
Mellen,
R. H.
, 1990, “
On Modeling Convective Turbulence,” J. Acoust. Soc. Am.,
88(6), pp. 2891–2893.

[CrossRef]
Hambric,
S. A.
,
Boger,
D. A.
,
Fahnline,
J. B.
, and
Campbell,
R. L.
, 2010, “
Structure- and Fluid-Borne Acoustic Power Sources Induced by Turbulent Flow in 90° Piping Elbows,” J. Fluids Struct.,
26(1), pp. 121–147.

[CrossRef]
Fahnline,
J. B.
, and
Koopmann,
G. H.
, 1996, “
A Lumped Paramter Model for the Acoustic Power Output From a Vibrating Structure,” J. Acoust. Soc. Am.,
100(6), pp. 3539–3547.

[CrossRef]
Fahnline,
J. B.
, 2016, “
Boundary-Element Analysis,” Engineering Vibroacoustic Analysis: Methods and Applications, Wiley, Chichester, UK, pp. 179–229.

Chase,
D.
, 1980, “
Modeling the Wavevector–Frequency Spectrum of Turbulent Boundary Layer Wall Pressure,” J. Sound Vib.,
70(1), pp. 29–67.

[CrossRef]
Howe,
M. S.
, 1998, Acoustics of Fluid-Structure Interactions,
Cambridge University Press, Cambridge, UK.

Lysak,
P. D.
, 2006, “
Modeling the Wall Pressure Spectrum in Turbulent Pipe Flows,” ASME J. Fluids Eng.,
128(2), pp. 216–222.

[CrossRef]
Smol'yakov,
A. V.
, 2006, “
A New Model for the Cross Spectrum and Wavenumber-Frequency Spectrum of Turbulent Pressure Fluctuation in a Boundary Layer,” Acoust. Phys.,
52(3), pp. 331–337.

[CrossRef]
Hildebrand,
F. B.
, 1987, Introduction to Numerical Analysis, Dover, Mineola, NY.

Cools,
R.
, 1997, “
Constructing Cubature Formulae: The Science Behind the Art,” Acta Numer.,
6, pp. 1–54.

[CrossRef]
Zenger,
C.
, 1990, Sparse Grids,
Technische Universität, Berlin.

Novak,
E.
, and
Ritter,
K.
, 1996, “
High Dimensional Integration of Smooth Functions Over Cubes,” Numer. Math.,
75(1), pp. 79–97.

[CrossRef]
Novak,
E.
, and
Ritter,
K.
, 1997, “
The Curse of Dimension and a Universal Method for Numerical Integration,” Multivariate Approximation and Splines,
Springer, Basel, Switzerland, pp. 177–187.

Gerstner,
T.
, and
Griebel,
M.
, 1998, “
Numerical Integration Using Sparse Grids,” Numer. Algorithms,
18(3/4), p. 209.

[CrossRef]
Bungartz,
H.-J.
, and
Griebel,
M.
, 2004, “
Sparse Grids,” Acta Numer.,
13, pp. 147–269.

[CrossRef]
Garcke,
J.
, 2012, “
Sparse Grids in a Nutshell,” Sparse Grids and Applications,
Springer, Berlin, pp. 57–80.

Zhang,
Z.
, and
Karniadakis,
G.
, 2017, Numerical Methods for Stochastic Partial Differential Equations With White Noise,
Springer, Cham, Switzerland.

Eldred,
M.
, 2009, “
Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design,” AIAA Paper No. 2009-2274.

Nobile,
F.
,
Tempone,
R.
, and
Webster,
C. G.
, 2008, “
A Sparse Grid Stochastic Collocation Method for Partial Differential Equations With Random Input Data,” SIAM J. Numer. Anal.,
46(5), pp. 2309–2345.

[CrossRef]
Cools,
R.
, and
Kim,
K. J.
, 2001, “
Rotation Invariant Cubature Formulas Over the n-Dimensional Unit Cube,” J. Comput. Appl. Math.,
132(1), pp. 15–32.

[CrossRef]
Mantel,
F.
, and
Rabinowitz,
P.
, 1977, “
The Application of Integer Programming to the Computation of Fully Symmetric Integration Formulas in Two and Three Dimensions,” SIAM J. Numer. Anal.,
14(3), pp. 391–425.

[CrossRef]
Espelid,
T. O.
, 1987, “
On the Construction of Good Fully Symmetric Integration Rules,” SIAM J. Numer. Anal.,
24(4), pp. 855–881.

[CrossRef]
Möller,
H. M.
, 1979, “
Lower Bounds for the Number of Nodes in Cubature Formulae,” Numerische Integration,
Springer, Basel, Switzerland, pp. 221–230.

Burkardt,
J.
, and
Webster,
C.
, 2007, “
A Low Level Introduction to High Dimensional Sparse Grids,” Sandia National Laboratories, Albuquerque, NM, accessed May 3, 2018,

http://people.sc.fsu.edu/~jburkardt/presentations/sandia_2007.pdf
Maestrello,
L.
, 1965, “
Measurement of Noise Radiated by Boundary Layer Excited Panels,” J. Sound Vib.,
2(2), pp. 100–115.

[CrossRef]