Ferry,
J. D.
, 1960, Viscoelastic Properties of Polymers,
Wiley,
New York.

Mainardi,
F.
, 2010, Fractional Calculus and Waves in Linear Viscoelasticity,
Imperial College Press,
London.

Nutting,
P. G.
, 1921, “A New General Law of Deformation,” J. Franklin Inst.,
191, pp. 676–686.

Bagley,
R. L.
, and
Torvik,
P. J.
, 1983, “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,” J. Rheol.,
27(3), pp. 201–210.

[CrossRef]
Bagley,
R. L.
, and
Torvik,
P. J.
, 1983, “Fractional Calculus—A Different Approach to the Analysis of Viscoelasticity Damped Structures,” AIAA J.,
21(5), p. 741.

[CrossRef]
Gemant,
A.
, 1936, “A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies,” Physics,
7(8), pp. 311–317.

[CrossRef]
Scott Blair,
G. W.
, 1944, “Analytical and Integrative Aspects of the Stress-Strain-Time Problems,” J. Sci. Instrum.,
21(5), pp. 80–84.

[CrossRef]
Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
New York, p. 81.

Simo,
J. C.
, 1987, “On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects,” Comput. Method Appl. Mech. Eng.,
60(2), pp. 153–173.

[CrossRef]
Drozdov,
A. D.
, 1997, “Fractional Differential Models in Finite Viscoelasticity,” Acta Mech.,
124(1–4), pp. 155–180.

[CrossRef]
Haupt,
P.
, and
Lion,
A.
, 2002, “On Finite Linear Viscoelasticity of Incompressible Isotropic Materials,” Acta Mech.,
159(1–4), pp. 87–124.

[CrossRef]
Adolfsson,
K.
, and
Enelund,
M.
, 2003, “Fractional Derivative Viscoelasticity at Large Deformations,” Nonlinear Dyn.,
33(3), pp. 301–321.

[CrossRef]
Adolfsson,
K.
, 2004, “Nonlinear Fractional Order Viscoelasticity at Large Deformations,” Nonlinear Dyn.,
38(1–4), pp. 233–246.

[CrossRef]
Nasuno,
H.
, 2009, “Nonlinear Viscoelastic Finite Element Analysis by Means of Fractional Calculus,” Ph.D. thesis, Iwaki Meisei University, Iwaki, Fukushima, Japan.

Fukunaga,
M.
, and
Shimizu,
N.
, 2011, “Three-Dimensional Fractional Derivative Models for Finite Deformation,” ASME Paper No. DETC2011-47552.

Fukunaga,
M.
, and
Shimizu,
N.
, 2015, “Fractional Derivative Constitutive Models for Finite Deformation of Viscoelastic Materials,” ASME J. Comput. Nonlinear Dyn.,
10(6), p. 061002.

[CrossRef]
Fukunaga,
M.
,
Shimizu,
N.
, and
Nasuno,
H.
, 2009, “A Nonlinear Fractional Derivative Models of Impulse Motion for Viscoelastic Materials,” Phys. Scr.,
T136, p. 014010.

[CrossRef]
Fukunaga,
M.
, and
Shimizu,
N.
, 2014, “Comparison of Fractional Derivative Models for Finite Deformation With Experiments of Impulse Response,” J. Vib. Control,
20(7), pp. 1033–1041.

[CrossRef]
Fukunaga,
M.
,
Shimizu,
N.
, and
Tsukui,
H.
, 2014, “Applications of Fractional Constitutive Models for Finite Deformation to Viscoelastic Materials,” International Conference on Fractional Differentiation and Its Applications (ICFDA), Catania, Sicily, Italy, June 23–25, pp. 1–6.

Yu,
Y.
,
Perdikaris,
P.
, and
Karniadakis,
G. E.
, 2016, “Fractional Modeling of Viscoelasticity in 3D Cerebral Arteries and Aneurysms,” J. Comput. Phys.,
323(2), pp. 219–242.

[CrossRef] [PubMed]
Alotta,
G.
,
Barrera,
O.
,
Cocks, A.
, and
Paola,
M. D.
, 2018, “The Finite Element Implementation of 3D Fractional Viscoelastic Constitutive Models,” Finite Elem. Anal. Des.,
146, pp. 28–41.

[CrossRef]
Truesdell,
C.
, and
Noll,
W.
, 2004, The Non-Linear Field Theories of Mechanics, 3rd ed.,
Wiley,
Heidelberg, Germany.

Holzapfel,
G. A.
, 2000, Nonlinear Solid Mechanics,
Wiley,
New York.

Bonet,
J.
, and
Wood,
R. D.
, 2008, Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed.,
Cambridge University Press,
Cambridge, UK.

Rouse,
J. P. E.
, 1953, “A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers,” J. Chem. Phys.,
21(7), pp. 1272–1280.

[CrossRef]
Zimm,
B. H.
, 1956, “Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss,” J. Chem. Phys.,
24(2), pp. 269–278.

[CrossRef]
Treloar,
L. R. G.
, 1975, The Physics of Rubber Elasticity (Oxford Classic Texts in the Physical Sciences), 3rd ed.,
Clarendon Press,
Oxford, UK.

Flory,
P. J.
, 1961, “Thermodynamic Relation for High Elastic Materials,” Trans. Faraday Soc.,
57, pp. 829–838.

[CrossRef]
Landau,
L. D.
, and
Lifshitz,
E. M.
, 1959, Fluid Mechanics,
Pergamon Press,
New York.

Oldham,
K. H.
, and
Spanier,
J.
, 1974, The Fractional Calculus,
Dover,
Mineola, NY.

Miehe,
C.
, 1996, “Numerical Computation of Algorithmic (Consistent) Tangent Moduli in Large-Strain Computational Inelasticity,” Comput. Methods Appl. Mech. Eng.,
134(3–4), pp. 223–224.

[CrossRef]
Sun,
W.
,
Chaikof,
E. L.
, and
Levenston,
M. E.
, 2008, “Numerical Approximation of Tangent Moduli for Finite Element Implementation of Nonlinear Hyperelastic Material Models,” ASME J. Biomech. Eng.,
130(6), p. 061003.

[CrossRef]Dassault Systèmes, 2018, “Abaqus User Subroutine Guide,” Dessault Systèmes Simulia Corp., Johnston, RI.

Fukunaga,
M.
, and
Shimizu,
N.
, 2011, “Nonlinear Fractional Derivative Models of Viscoelastic Impact Dynamics Based on Viscoelasticity and Generalized Maxwell Law,” ASME J. Comput. Nonlinear Dyn.,
6(2), p. 021005.

[CrossRef]
Shimizu,
N.
, and
Fukunaga,
M.
, 2017, “Comparison of Fractional Derivative Model and Prony Method for Viscoelastic Damper,” JSME Dynamics and Design Conference, Toyohashi, Japan, Aug. 29–Sept. 1, p. 248.

https://www.jstage.jst.go.jp/article/jsmedmc/2017/0/2017_248/_article/-char/ja/
Geissler,
E.
, and
Hecht,
A. M.
, 1980, “The Poisson Ratio in Polymer Gels,” Macromolecules,
13(5), pp. 1276–1280.

[CrossRef]
Urayama,
K.
,
Takigawa,
T.
, and
Matsuda,
T.
, 1993, “Poisson's Ratio of Poly(Vinyl Alcohol) Gels,” Macromolecules,
26(12), pp. 3092–3096.

[CrossRef]
Wood,
L. A.
, and
Martin,
G. M.
, 1964, “Compressibility of Natural Rubber at Pressure Below 500 kg/cm

^{2},” Rubber Chem. Technol.,
37(4), pp. 850–865.

[CrossRef]
Holownia,
B. P.
, 1975, “Effect of Carbon Black on Poisson's Ratio of Elastomers,” Rubber Chem. Technol.,
48(2), pp. 246–253.

[CrossRef]
Kawabata,
S.
,
Matsuda,
M.
,
Tei,
K.
, and
Kawai,
H.
, 1981, “Experimental Study of the Strain Energy Density Function of Isoprene Rubber Vulcanized,” Macromolecules,
14(1), pp. 154–162.

[CrossRef]