0
Research Papers

A New Insight Into the Grünwald–Letnikov Discrete Fractional Calculus

[+] Author and Article Information
Yiheng Wei, Weidi Yin, Yanting Zhao

Department of Automation,
University of Science and Technology of China,
Hefei 230026, China

Yong Wang

Department of Automation,
University of Science and Technology of China,
Hefei 230026, China
e-mail: yongwang@ustc.edu.cn

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received July 31, 2018; final manuscript received January 17, 2019; published online February 15, 2019. Assoc. Editor: Firdaus Udwadia.

J. Comput. Nonlinear Dynam 14(4), 041008 (Feb 15, 2019) (5 pages) Paper No: CND-18-1343; doi: 10.1115/1.4042635 History: Received July 31, 2018; Revised January 17, 2019

The primary work of this paper is to investigate some potential properties of Grünwald–Letnikov discrete fractional calculus. By employing a concise and convenient description, this paper not only establishes excellent relationships between fractional difference/sum and the integer order case but also generalizes the Z-transform and convolution operation.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hu, W. , Ding, D. W. , and Wang, N. , 2017, “Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System,” ASME J. Comput. Nonlinear Dyn., 12(4), p. 041003. [CrossRef]
Zou, C. F. , Hu, X. S. , Dey, S. , Zhang, L. , and Tang, X. L. , 2018, “Nonlinear Fractional-Order Estimator With Guaranteed Robustness and Stability for Lithium-Ion Batteries,” IEEE Trans. Ind. Electron., 65(7), pp. 5951–5961.
Chen, K. , Li, C. , and Tang, R. N. , 2017, “Estimation of the Nitrogen Concentration of Rubber Tree Using Fractional Calculus Augmented NIR Spectra,” Ind. Crops Prod., 108, pp. 831–839. [CrossRef]
Sun, H. G. , Zhang, Y. , Baleanu, D. , Chen, W. , and Chen, Y. Q. , 2018, “A New Collection of Real World Applications of Fractional Calculus in Science and Engineering,” Commun. Nonlinear Sci. Numer. Simul., 64, pp. 213–231. [CrossRef]
Podlubny, I. , 1999, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, CA.
Meerschaert, M. M. , Mortensen, J. , and Scheffler, H. P. , 2004, “Vector Grünwald Formula for Fractional Derivatives,” Fractional Calculus Appl. Anal., 7(1), pp. 61–82. https://www.stt.msu.edu/~mcubed/multigrunwald.pdf
Meerschaert, M. M. , and Tadjeran, C. , 2004, “Finite Difference Approximations for Fractional Advection-Dispersion Flow Equations,” J. Comput. Appl. Math., 172(1), pp. 65–77. [CrossRef]
Stynes, M. , O'Riordan, E. , and Gracia, J. L. , 2017, “Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation,” SIAM J. Numer. Anal., 55(2), pp. 1057–1079. [CrossRef]
Hajipour, M. , Jajarmi, A. , and Baleanu, D. , 2018, “An Efficient Non-Standard Finite Difference Scheme for a Class of Fractional Chaotic Systems,” ASME J. Comput. Nonlinear Dyn., 13(2), p. 021013. [CrossRef]
Zhao, M. , Wang, H. , and Cheng, A. J. , 2018, “A Fast Finite Difference Method for Three-Dimensional Time-Dependent Space-Fractional Diffusion Equations With Fractional Derivative Boundary Conditions,” J. Sci. Comput., 74(2), pp. 1009–1033. [CrossRef]
Abdelouahab, M. S. , and Hamri, N. E. , 2016, “The Grünwald–Letnikov Fractional-Order Derivative With Fixed Memory Length,” Mediterr. J. Math., 13(2), pp. 557–572. [CrossRef]
Holm, M. T. , 2011, “The Laplace Transform in Discrete Fractional Calculus,” Comput. Math. Appl., 62(3), pp. 1591–1601. [CrossRef]
Wei, Y. H. , Chen, Y. Q. , Cheng, S. S. , and Wang, Y. , 2017, “A Note on Short Memory Principle of Fractional Calculus,” Fractional Calculus Appl. Anal., 20(6), pp. 1382–1404.
Wei, Y. H. , Gao, Q. , Liu, D. Y. , and Wang, Y. , 2019, “On the Series Representation of Nabla Discrete Fractional Calculus,” Commun. Nonlinear Sci. Numer. Simul., 69, pp. 198–218. [CrossRef]
Wu, G. C. , Baleanu, D. , and Huang, L. L. , 2018, “Novel Mittag-Leffler Stability of Linear Fractional Delay Difference Equations With Impulse,” Appl. Math. Lett., 82, pp. 71–78. [CrossRef]
Wei, Y. H. , Chen, Y. Q. , Liu, T. Y. , and Wang, Y. , 2018, “Lyapunov Functions for Nabla Discrete Fractional Order Systems,” ISA Trans. (epub).
Kumar, D. , Singh, J. , and Baleanu, D. , 2016, “Numerical Computation of a Fractional Model of Differential-Difference Equation,” ASME J. Comput. Nonlinear Dyn., 11(6), p. 061004. [CrossRef]
Wei, Y. H. , Chen, Y. Q. , Wang, J. C. , and Wang, Y. , 2019, “Analysis and Description of the Infinite-Dimensional Nature for Nabla Discrete Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul., 72, pp. 472–492. [CrossRef]
Cheng, S. S. , Wei, Y. H. , Chen, Y. Q. , Liang, S. , and Wang, Y. , 2017, “A Universal Modified LMS Algorithm With Iteration Order Hybrid Switching,” ISA Trans., 67, pp. 67–75. [CrossRef] [PubMed]
Liu, T. Y. , Cheng, S. S. , Wei, Y. , Li, A. , and Wang, Y. , 2019, “Fractional Central Difference Kalman Filter With Unknown Prior Information,” Signal Process., 154, pp. 294–303. [CrossRef]
Yang, Q. , Chen, D. L. , Zhao, T. B. , and Chen, Y. Q. , 2016, “Fractional Calculus in Image Processing: A Review,” Fractional Calculus Appl. Anal., 19(5), pp. 1222–1249.
Goodrich, C. , and Peterson, A. C. , 2015, Discrete Fractional Calculus, Springer, Cham, Switzerland.
Cheng, J. F. , 2011, Fractional Difference Equation Theory, Xiamen University Press, Xiamen, China.
Ostalczyk, P. , 2015, Discrete Fractional Calculus: Applications in Control and Image Processing, World Scientific, Berlin.
Mozyrska, D. , and Girejko, E. , 2013, “Overview of Fractional h-Difference Operators,” Operator Theory: Advances and Applications, Springer, Basel, Switzerland, pp. 253–268.

Figures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In