Simoen,
E.
,
De Roeck,
G.
, and
Lombaert,
G.
, 2015, “
Dealing With Uncertainty in Model Updating for Damage Assessment: A Review,” Mech. Syst. Signal Process.,
56–57, pp. 123–149.

[CrossRef]
Friswell,
M.
, 1989, “
The Adjustment of Structural Parameters Using a Minimum Variance Estimator,” Mech. Syst. Signal Process.,
3(2), pp. 143–155.

[CrossRef]
Beck,
J. L.
, and
Katafygiotis,
L. S.
, 1998, “
Updating Models and Their Uncertainties—I: Bayesian Statistical Framework,” J. Eng. Mech.,
124(4), pp. 455–461.

[CrossRef]
Patelli,
E.
,
Govers,
Y.
,
Broggi,
M.
,
Gomes,
H. M.
,
Link,
M.
, and
Mottershead,
J. E.
, 2017, “
Sensitivity or Bayesian Model Updating: A Comparison of Techniques Using the DLR AIRMOD Test Data,” Arch. Appl. Mech.,
87(5), pp. 905–925.

[CrossRef]
Fonseca,
J. R.
,
Friswell,
M. I.
,
Mottershead,
J. E.
, and
Lees,
A. W.
, 2005, “
Uncertainty Identification by the Maximum Likelihood Method,” J. Sound Vib.,
288(3), pp. 587–599.

[CrossRef]
Khodaparast,
H. H.
,
Mottershead,
J. E.
, and
Friswell,
M. I.
, 2008, “
Perturbation Methods for the Estimation of Parameter Variability in Stochastic Model Updating,” Mech. Syst. Signal Process.,
22(8), pp. 1751–1773.

[CrossRef]
Fang,
S.-E.
,
Ren,
W.-X.
, and
Perera,
R.
, 2012, “
A Stochastic Model Updating Method for Parameter Variability Quantification Based on Response Surface Models and Monte Carlo Simulation,” Mech. Syst. Signal Process.,
33, pp. 83–96.

[CrossRef]
Khodaparast,
H. H.
,
Mottershead,
J. E.
, and
Badcock,
K. J.
, 2011, “
Interval Model Updating With Irreducible Uncertainty Using the Kriging Predictor,” Mech. Syst. Signal Process.,
25(4), pp. 1204–1226.

[CrossRef]
Yuen,
K.-V.
, and
Kuok,
S.-C.
, 2011, “
Bayesian Methods for Updating Dynamic Models,” ASME Appl. Mech. Rev.,
64(1), p. 010802.

[CrossRef]
Hegde,
A.
, and
Tang,
J.
, 2018, “
Identifying Parametric Variation in Second-Order System From Frequency Response Measurement,” J. Vib. Control,
24(5), pp. 879–891.

[CrossRef]
Oberkampf,
W. L.
,
Helton,
J. C.
,
Joslyn,
C. A.
,
Wojtkiewicz,
S. F.
, and
Ferson,
S.
, 2004, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters,” Reliab. Eng. Syst. Saf.,
85(1–3), pp. 11–19.

[CrossRef]
Park,
I.
, and
Grandhi,
R. V.
, 2011, “
Quantifying Multiple Types of Uncertainty in Physics-Based Simulation Using Bayesian Model Averaging,” AIAA J.,
49(5), pp. 1038–1045.

[CrossRef]
Muto,
M.
, and
Beck,
J. L.
, 2008, “
Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation,” J. Vib. Control,
14(1–2), pp. 7–34.

[CrossRef]
Ben Abdessalem,
A.
,
Dervilis,
N.
,
Wagg,
D.
, and
Worden,
K.
, 2018, “
Model Selection and Parameter Estimation in Structural Dynamics Using Approximate Bayesian Computation,” Mech. Syst. Signal Process.,
99, pp. 306–325.

[CrossRef]
Abdessalem,
A. B.
,
Dervilis,
N.
,
Wagg,
D.
, and
Worden,
K.
, 2019, “
An Efficient Likelihood-Free Bayesian Computation for Model Selection and Parameter Estimation Applied to Structural Dynamics,” Structural Health Monitoring, Photogrammetry & DIC, Vol. 6, C. Niezrecki, J. Baqersad, eds., Springer, Cham, Switzerland, pp. 141–151.

Van Buren,
K. L.
,
Hall,
T. M.
,
Gonzales,
L. M.
,
Hemez,
F. M.
, and
Anton,
S. R.
, 2015, “
A Case Study to Quantify Prediction Bounds Caused by Model-Form Uncertainty of a Portal Frame,” Mech. Syst. Signal Process.,
50–51, pp. 11–26.

[CrossRef]
Capiez-Lernout,
E.
, and
Soize,
C.
, 2017, “
An Improvement of the Uncertainty Quantification in Computational Structural Dynamics With Nonlinear Geometrical Effects,” Int. J. Uncertainty Quantif.,
7(1), pp. 83–98.

Farhat,
C.
,
Bos,
A.
,
Avery,
P.
, and
Soize,
C.
, 2017, “
Modeling and Quantification of Model-Form Uncertainties in Eigenvalue Computations Using a Stochastic Reduced Model,” AIAA J.,
56(3), pp. 1–13.

Farhat,
C.
,
Bos,
A.
,
Tezaur,
R.
,
Chapman,
T.
,
Avery,
P.
, and
Soize,
C.
, 2018, “
A Stochastic Projection-Based Hyperreduced Order Model for Model-Form Uncertainties in Vibration Analysis,” AIAA 2018-1410.

Rossikhin,
Y. A.
, and
Shitikova,
M. V.
, 1997, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids,” ASME Appl. Mech. Rev.,
50(1), pp. 15–67.

[CrossRef]
Rossikhin,
Y. A.
, and
Shitikova,
M. V.
, 2010, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results,” ASME Appl. Mech. Rev.,
63(1), p. 010801.

[CrossRef]
Du,
M.
,
Wang,
Z.
, and
Hu,
H.
, 2013, “
Measuring Memory With the Order of Fractional Derivative,” Sci. Rep.,
3, p. 3431.

[CrossRef] [PubMed]
Wang,
Y.
, 2016, “
Model-Form Calibration in Drift-Diffusion Simulation Using Fractional Derivatives,” ASME ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B,
2(3), p. 031006.

[CrossRef]
Sivaprasad,
R.
,
Venkatesha,
S.
, and
Manohar,
C.
, 2009, “
Identification of Dynamical Systems With Fractional Derivative Damping Models Using Inverse Sensitivity Analysis,” Comput., Mater. Continua,
9(3), pp. 179–207.

Kougioumtzoglou,
I. A.
,
dos Santos,
K. R.
, and
Comerford,
L.
, 2017, “
Incomplete Data Based Parameter Identification of Nonlinear and Time-Variant Oscillators With Fractional Derivative Elements,” Mech. Syst. Signal Process.,
94, pp. 279–296.

[CrossRef]
Mani,
A. K.
,
Narayanan,
M. D.
, and
Sen,
M.
, 2018, “
Parametric Identification of Fractional-Order Nonlinear Systems,” Nonlinear Dyn.,
93(2), pp. 945–960.

Wei,
J.
,
Yu,
Y.
, and
Cai,
D.
, 2018, “
Identification of Uncertain Incommensurate Fractional-Order Chaotic Systems Using an Improved Quantum-Behaved Particle Swarm Optimization Algorithm,” ASME J. Comput. Nonlinear Dyn.,
13(5), p. 051004.

[CrossRef]
Bagley,
R. L.
, and
Torvik,
P. J.
, 1983, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures,” AIAA J.,
21, pp. 741–748.

[CrossRef]
Torvik,
P. J.
, and
Bagley,
R. L.
, 1984, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials,” ASME J. Appl. Mech.,
51(2), pp. 725–728.

[CrossRef]
Wang,
Z.
, and
Du,
M.
, 2011, “
Asymptotical Behavior of the Solution of a SDOF Linear Fractionally Damped Vibration System,” Shock Vib.,
18(1–2), pp. 257–268.

[CrossRef]
Wang,
Z.
, and
Hu,
H.
, 2010, “
Stability of a Linear Oscillator With Damping Force of the Fractional-Order Derivative,” Sci. China Phys., Mech. Astron.,
53(2), pp. 345–352.

[CrossRef]
Dai,
H.
,
Zheng,
Z.
, and
Wang,
W.
, 2017, “
On Generalized Fractional Vibration Equation,” Chaos, Solitons Fractals,
95, pp. 48–51.

[CrossRef]
Zhong,
X.-C.
,
Liu,
X.-L.
, and
Liao,
S.-L.
, 2017, “
On a Generalized Bagley–Torvik Equation With a Fractional Integral Boundary Condition,” Int. J. Appl. Comput. Math.,
3(S1), pp. 727–746.

[CrossRef]
Di Paola,
M.
,
Pinnola,
F. P.
, and
Spanos,
P. D.
, 2014, “
Analysis of Multi-Degree-of-Freedom Systems With Fractional Derivative Elements of Rational Order,” IEEE International Conference on Fractional Differentiation and Its Applications (ICFDA), Catania, Italy, June 23–25, pp. 1–6.

Singh,
M.
,
Chang,
T.-S.
, and
Nandan,
H.
, 2011, “
Algorithms for Seismic Analysis of MDOF Systems With Fractional Derivatives,” Eng. Struct.,
33(8), pp. 2371–2381.

[CrossRef]
Li,
L.
,
Hu,
Y.
, and
Wang,
X.
, 2013, “
Improved Approximate Methods for Calculating Frequency Response Function Matrix and Response of MDOF Systems With Viscoelastic Hereditary Terms,” J. Sound Vib.,
332(15), pp. 3945–3956.

[CrossRef]
Agrawal,
O. P.
, 2004, “
Analytical Solution for Stochastic Response of a Fractionally Damped Beam,” ASME J. Vib. Acoust.,
126(4), pp. 561–566.

[CrossRef]
Malara,
G.
, and
Spanos,
P. D.
, 2018, “
Nonlinear Random Vibrations of Plates Endowed With Fractional Derivative Elements,” Probab. Eng. Mech.,
54, pp. 2–8.

Rossikhin,
Y. A.
, and
Shitikova,
M.
, 2001, “
Analysis of Dynamic Behaviour of Viscoelastic Rods Whose Rheological Models Contain Fractional Derivatives of Two Different Orders,” J. Appl. Math. Mech. (Engl. Transl.),
81(6), pp. 363–376.

Padovan,
J.
, and
Sawicki,
J. T.
, 1998, “
Nonlinear Vibrations of Fractionally Damped Systems,” Nonlinear Dyn.,
16(4), pp. 321–336.

[CrossRef]
Shen,
Y.
,
Yang,
S.
,
Xing,
H.
, and
Gao,
G.
, 2012, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative,” Commun. Nonlinear Sci. Numer. Simul.,
17(7), pp. 3092–3100.

[CrossRef]
Vakilzadeh,
M. K.
,
Yaghoubi,
V.
,
Johansson,
A. T.
, and
Abrahamsson,
T. J. S.
, 2017, “
Stochastic Finite Element Model Calibration Based on Frequency Responses and Bootstrap Sampling,” Mech. Syst. Signal Process.,
88, pp. 180–198.

[CrossRef]
Vrugt,
J. A.
, 2016, “
Markov Chain Monte Carlo Simulation Using the DREAM Software Package: Theory, Concepts, and MATLAB Implementation,” Environ. Modell. Software,
75, pp. 273–316.

[CrossRef]
Mares C,
D. B.
,
Mottershead,
J. E.
, and
Friswell,
M. I.
, 2006, “
Model Updating Using Bayesian Estimation,” International Conference on Noise and Vibration Engineering, Heverlee, Belgium, Sept. 18–20, pp. 2607–2616.

Chen,
Y.
,
Petras,
I.
, and
Xue,
D.
, 2009, “
Fractional Order Control—A Tutorial,” IEEE American Control Conference (ACC'09), St. Louis, MO, June 10–12, pp. 1397–1411.

Audet,
C.
, and
Dennis,
J. E., Jr.
, 2002, “
Analysis of Generalized Pattern Searches,” SIAM J. Optim.,
13(3), pp. 889–903.

[CrossRef]