One of the essential causes of disk disorders is the pathologic change in the ligamentous attachments of the disk-condyle complex. In this paper, the response of the soft components of a human temporomandibular joint during mouth opening in healthy and two pathologic situations was studied. A three-dimensional finite element model of this joint comprising the bone components, the articular disk, and the temporomandibular ligaments was developed from a set of medical images. A fiber reinforced porohyperelastic model was used to simulate the behavior of the articular disk, taking into account the orientation of the fibers in each zone of this cartilage component. The condylar movements during jaw opening were introduced as the loading condition in the analysis. In the healthy joint, it was obtained that the highest stresses were located at the lateral part of the intermediate zone of the disk. In this case, the collateral ligaments were subject to high loads, since they are responsible of the attachment of the disk to the condyle during the movement of the mandible. Additionally, two pathologic situations were simulated: damage of the retrodiscal tissue and disruption of the lateral discal ligament. In both cases, the highest stresses moved to the posterior part of the disk since it was displaced in the anterior-medial direction. In conclusion, in the healthy joint, the highest stresses were located in the lateral zone of the disk where perforations are found most often in the clinical experience. On the other hand, the results obtained in the damaged joints suggested that the disruption of the disk attachments may cause an anterior displacement of the disk and instability of the joint.

1.
Nickel
,
J. C.
, and
McLachlan
,
K. R.
, 1994, “
In Vitro Measurement of the Frictional Properties of the Temporomandibular Joint Disc
,”
Arch. Oral Biol.
0003-9969,
39
(
4
), pp.
323
331
.
2.
Gray
,
H.
, 1998,
Gray’s Anatomy: The Anatomical Basis of Medicine and Surgery
, 38th ed.,
Harcourt
, Vol.
1
.
3.
Rouviere
,
H.
, and
Delmas
,
A.
, 1985,
Anatomie Humaine
, Masson, Vol.
1
.
4.
Prater
,
M. E.
,
Bailey
,
B. J.
, and
Quinn
,
F. B.
, 1998, “
Temporomandibular Joint Disorders
,”
The University of Texas Medical Branch
.
5.
Cooper
,
B.
,
Oberdorfer
,
M.
,
Rumpf
,
D.
,
Malakhova
,
O.
,
Rudman
,
R.
, and
Mariotti
,
A.
, 1999, “
Trauma Modifies Strength and Composition of Retrodiscal Tissues of the Goat Temporomandibular Joint
,”
Oral Dis.
1354-523X,
5
(
4
), pp.
329
336
.
6.
Weinberg
,
S.
, and
Lapointe
,
H.
, 1987, “
Cervical Extension-Flexion Injury (Whiplash) and Internal Derangement of the Temporomandibular Joint
,”
J. Oral Maxillofac Surg.
0278-2391,
45
(
8
), pp.
653
656
.
7.
Jergenson
,
M.
, and
Barton
,
J.
, 1998, “
The Occurrence of TMJ Disc Perforations in an Aging Population
,”
J. Dent. Res.
0022-0345,
77
, p.
77
.
8.
Dworkin
,
S. F.
,
Huggins
,
K. H.
,
LeResche
,
L.
,
VonKorff
,
M.
,
Howard
,
J.
,
Truelove
,
E.
, and
Sommers
,
E.
, 1990, “
Epidemiology of Signs and Symptoms in Temporomandibular Disorders: Clinical Signs in Cases and Controls
,”
J. Am. Dent. Assoc.
0002-8177,
120
(
3
), pp.
273
281
.
9.
Chen
,
J.
, and
Xu
,
L.
, 1994, “
A Finite Element Analysis of the Human Temporomandibular Joint
,”
J. Biomech. Eng.
0148-0731,
116
, pp.
401
407
.
10.
DeVocht
,
J. W.
,
Goel
,
V. K.
,
Zeitler
,
D. L.
, and
Lew
,
D. A.
, 1996, “
A Study of the Control of Disc Movement Within the Temporomandibular Joint Using the Finite Element Technique
,”
J. Oral Maxillofac Surg.
0278-2391,
54
, pp.
1431
1437
.
11.
Chen
,
J.
,
Akyuz
,
U.
,
Xu
,
L.
, and
Pidaparti
,
R. M. V.
, 1998, “
Stress Analysis of the Human Temporomandibular Joint
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
565
572
.
12.
Nagahara
,
K.
,
Murata
,
S.
,
Nakamura
,
S.
, and
Tsuchiya
,
T.
, 1999, “
Displacement and Stress Distribution in the Temporomandibular Joint During Clenching
,”
Angle Orthod.
0003-3219,
69
, pp.
372
379
.
13.
Beek
,
M.
,
Koolstra
,
J. H.
,
van Ruijven
,
L. J.
, and
van Eijden
,
T. M. G. J.
, 2000, “
Three-Dimensional Finite Element Analysis of the Human Temporomandibular Joint Disc
,”
J. Biomech.
0021-9290,
33
, pp.
307
316
.
14.
Beek
,
M.
,
Koolstra
,
J. H.
,
van Ruijven
,
L. J.
, and
van Eijden
,
T. M. G. J.
, 2001, “
Three-Dimensional Finite Element Analysis of the Cartilaginous Structures in the Human Temporomandibular Joint
,”
J. Dent. Res.
0022-0345,
80
, pp.
1913
1918
.
15.
Hu
,
K.
,
Qiguo
,
R.
,
Fang
,
J.
, and
Mao
,
J. J.
, 2003, “
Effects of Condylar Fibrocartilage on the Biomechanical Loading of the Human Temporomandibular Joint in a Three-Dimensional, Nonlinear Finite Element Model
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
107
113
.
16.
Tanaka
,
E.
,
Rodrigo
,
P.
,
Tanaka
,
M.
,
Kawaguchi
,
A.
,
Shibazaji
,
T.
, and
Tanne
,
K.
, 2001, “
Stress Analysis in the TMJ During Jaw Opening by Use of a Three Dimensional Finite Element Model Based on Magnetic Resonance Images
,”
Int. J. Oral Maxillofac Surg.
0901-5027,
30
, pp.
421
430
.
17.
Tanaka
,
E.
,
del Pozo
,
R.
,
Tanaka
,
M.
,
Asai
,
D.
,
Hirose
,
M.
,
Iwabe
,
T.
, and
Tanne
,
K.
, 2004, “
Three Dimensional Finite Element Analysis of Human Temporomandibular Joint With and Without Disc Displacement During Jaw Opening
,”
Med. Eng. Phys.
1350-4533,
26
, pp.
503
511
.
18.
Beek
,
M.
,
Koolstra
,
J. H.
, and
van Eijden
,
T. M. G. J.
, 2003, “
Human Temporomandibular Joint Disc Cartilage as a Poroelastic Material
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
18
, pp.
69
76
.
19.
Donzelli
,
P. S.
,
Gallo
,
L. M.
,
Spilker
,
R. L.
, and
Palla
,
S.
, 2004, “
Biphasic Finite Element Simulation of the TMJ Disc from in Vivo Kinematic and Geometric Measurements
,”
J. Biomech.
0021-9290,
37
(
11
), pp.
1787
1791
.
20.
Pérez-Palomar
,
A.
, and
Doblaré
,
M.
, 2006, “
The Effect of Collagen Reinforcement in the Behaviour of the Temporomandibular Joint Disc
,”
J. Biomech.
(in press).
21.
Pérez-Palomar
,
A.
, 2004, “
Three-Dimensional Finite Element Simulation of the Temporomandibular Joint
,” (in Spanish), PhD thesis, University of Zaragoza, Spain.
22.
Pérez-Palomar
,
A.
, and
Doblaré
,
M.
, 2006, “
On the Numerical Simulation of the Mechanical Behaviour of Articular Cartilage
,”
Int. J. Numer. Methods Eng.
(in press).
23.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics
,
Wiley
,
New York
.
24.
Berkovitz
,
B. K. B.
, 2000, “
Collagen Crimping in the Intra-Articular Disc and Articular Surfaces of the Human Temporomandibular Joint
,”
Arch. Oral Biol.
0003-9969,
45
, pp.
749
756
.
25.
Hibbit, Karlsson, and Sorensen, Inc.
, 2003,
Abaqus User’s Manual
,
HKS Inc.
,
Pawtucket, RI
,
6.4
.
26.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindje
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
27.
Tanaka
,
E.
,
del Pozo
,
R.
,
Sugiyama
,
M.
, and
Tanne
,
K.
, 2002, “
Biomechanical Response of Retrodiscal Tissue in the Temporomandibular Joint Under Compression
,”
J. Oral Maxillofac Surg.
0278-2391,
60
, pp.
546
551
.
28.
Tanaka
,
E.
,
Tanne
,
K.
, and
Sakuda
,
M. A.
, 1994, “
A Three Dimensional Finite Element Model of the Mandible Including the TMJ and Its Application to Stress Analysis in the TMJ During Clenching
,”
Med. Eng. Phys.
1350-4533,
16
, pp.
316
322
.
29.
Shengyi
,
T.
, and
Yinghua
,
X.
, 1991, “
Biomechanical Properties and Collagen Fiber Orientation of TMJ Discs in Dogs: Part I. Gross Anatomy and Collagen Fiber Orientation of the Discs
,”
J. Craniomandib Disord.
0890-2739,
5
, pp.
28
34
.
30.
Suh
,
J. K.
,
Spilker
,
R. L.
, and
Holmes
,
M. R.
, 1991, “
A Penalty Finite Element Analysis for Non-Linear Mechanics of Biphasic Hydrated Soft Tissue Under Large Deformation
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
1411
1439
.
31.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1997, “
Mixed and Penalty Finite Element Models for the Nonlinear Behaviour of Biphasic Soft Tissues in Finite Deformation: Part I Alternate Formulations
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
, pp.
25
46
.
32.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1997, “
Mixed and Penalty Finite Element Models for the Nonlinear Behaviour of Biphasic Soft Tissues in Finite Deformation: Part II Nonlinear Examples
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
, pp.
151
170
.
33.
Koolstra
,
J. H.
, and
van Eijden
,
T. M. G. J.
, 2004, “
Functional Significance of the Coupling Between Head and Jaw Movements
,”
J. Biomech.
0021-9290,
37
, pp.
1387
1392
.
34.
Chen
,
J.
, and
Buckwalter
,
K.
, 1993, “
Displacement Analysis of the Temporomandibular Condyle from Magnetic Resonance Images
,”
J. Biomech.
0021-9290,
26
, pp.
1455
1462
.
35.
Lindauer
,
S. J.
,
Sabol
,
G.
,
Isaacson
,
R. J.
, and
Davidovitch
,
M.
, 1995, “
Condylar Movement and Mandibular Rotation During Jaw Opening
,”
Alma Mater. (Baltimore)
0065-6445,
107
(
6
), pp.
573
577
.
36.
Osborn
,
J. W.
, 1989, “
The Temporomandibular Ligament and the Articular Eminence as Constraints During Jaw Opening
,”
J. Oral Rehabil.
0305-182X,
16
, pp.
323
333
.
37.
Werner
,
J. A.
,
Tillmann
,
B.
, and
Schleicher
,
B.
, 1991, “
Functional Anatomy of the Temporomandibular Joint
,”
Anat. Embryol.
0340-2061,
183
, pp.
89
95
.
38.
Nitzan
,
D. W.
,
Mahler
,
Y.
, and
Simkin
,
A.
, 1992, “
Intra-Articular Pressure Measurements in Patients With Suddenly Developing, Severely Limited Mouth Opening
,”
J. Oral Maxillofac Surg.
0278-2391,
50
(
10
), pp.
1038
1042
.
39.
Wingstrand
,
H.
,
Wingstrand
,
A.
, and
Krantz
,
P.
, 1990, “
Intracapsular and Atmospheric Pressure in the Dynamics and Stability of the Hip: A Biomechanical Study
,”
Acta Orthop. Scand.
0001-6470,
61
(
3
), pp.
231
235
.
40.
May
,
B.
,
Saha
,
S.
, and
Saltzman
,
M.
, 2001, “
A Three-Dimensional Mathematical Model of Temporomandibular Joint Loading
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
16
, pp.
489
495
.
41.
Takaku
,
S.
,
Yoshida
,
M.
,
Sano
,
T.
, and
Toyoda
,
T.
, 1996, “
Magnetic Resonance Images in Patients with Acute Traumatic Injury of the Temporomandibular Joint: A Preliminary Report
,”
J. Craniomaxillofac Surg.
1010-5182,
24
(
3
), pp.
173
177
.
42.
Sano
,
T.
, 2000, “
Recent Developments in Understanding Temporomandibular Disorders
,”
Dentomaxillofac Radiol.
0250-832X,
29
, pp.
260
263
.
43.
Oberg
,
T.
,
Carlsson
,
G. E.
, and
Fajers
,
C. M.
, 1971, “
The Temporomandibular Joint. A Morphologic Study on Human Autopsy Material
,”
Acta Odontol. Scand.
0001-6357,
29
, pp.
349
384
.
44.
Stratmann
,
U.
,
Schaarschmidt
,
K.
, and
Santamaria
,
P.
, 1996, “
Morphologic Investigation of Condylar Cartilage and Disc Thickness in the Human Temporomandibular Joint: Significance for the Definition of Osteoarthrotic Changes
,”
J. Oral Pathol. Med.
0904-2512,
25
, pp.
202
205
.
45.
Kurita
,
H.
,
Ohtsuka
,
A.
, and
Kobayashi
,
H.
, 2000, “
The Relationship Between the Degree of Disk Displacement and Ability to Perform Disk Reduction
,”
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
1079-2104,
90
, pp.
16
20
.
46.
Osborn
,
J. W.
, 1985, “
The Disc of the Human Temporomandibular Joint: Design, Function and Failure
,”
J. Oral Rehabil.
0305-182X,
12
, pp.
279
293
.
You do not currently have access to this content.