Abdominal aortic aneurysm (AAA) can be defined as a permanent and irreversible dilation of the infrarenal aorta. AAAs are often considered to be an aorta with a diameter 1.5 times the normal infrarenal aorta diameter. This paper describes a technique to manufacture realistic silicone AAA models for use with experimental studies. This paper is concerned with the reconstruction and manufacturing process of patient-specific AAAs. 3D reconstruction from computed tomography scan data allows the AAA to be created. Mould sets are then designed for these AAA models utilizing computer aided design∕computer aided manufacture techniques and combined with the injection-moulding method. Silicone rubber forms the basis of the resulting AAA model. Assessment of wall thickness and overall percentage difference from the final silicone model to that of the computer-generated model was performed. In these realistic AAA models, wall thickness was found to vary by an average of 9.21%. The percentage difference in wall thickness recorded can be attributed to the contraction of the casting wax and the expansion of the silicone during model manufacture. This method may be used in conjunction with wall stress studies using the photoelastic method or in fluid dynamic studies using a laser-Doppler anemometry. In conclusion, these patient-specific rubber AAA models can be used in experimental investigations, but should be assessed for wall thickness variability once manufactured.

1.
Sakalihasan
,
N.
,
Limet
,
R.
, and
Defawe
,
O. D.
, 2005, “
Abdominal Aortic Aneurysm
,”
Lancet
0140-6736,
365
(
9470
), pp.
1577
1589
.
2.
Johnston
,
K. W.
,
Rutherford
,
R. B.
,
Tilson
,
M. D.
,
Shah
,
D. M.
,
Hollier
,
L.
, and
Stanley
,
J. C.
, 1991, “
Suggested Standards for Reporting on Arterial Aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery
,”
J. Vasc. Surg.
0741-5214,
13
, pp.
452
458
.
3.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
, 2002, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
0741-5214,
36
, pp.
589
597
.
4.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
0741-5214,
37
, pp.
724
732
.
5.
Di Martino
,
E. S.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
, 2001, “
Fluid-Structure Interaction Within Realistic 3D Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
647
655
.
6.
Papaharilaou
,
Y.
,
Ekaterinaris
,
J. A.
,
Manousaki
,
E.
, and
Katsamouris
,
A. N.
, 2007, “
A Decoupled Fluid Structure Approach for Estimating Wall Stress in Abdominal Aortic Aneurysms
,”
J. Biomech.
0021-9290,
40
(
2
), pp.
367
377
.
7.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
, 2000, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
31
, pp.
760
769
.
8.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
, 1998, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
0741-5214,
27
(
4
), pp.
632
639
.
9.
Morris
,
L.
,
O’Donnell
,
P.
,
Delassus
,
P.
, and
McGloughlin
,
T.
, 2004, “
Experimental Assessment of Stress Patterns in Abdominal Aortic Aneurysms Using the Photoelastic Method
,”
Strain
,
40
(
4
), pp.
165
172
.
10.
Seong
,
J.
,
Sadasivan
,
C.
,
Onizuka
,
M.
,
Gounis
,
M. J.
,
Christian
,
F.
,
Miskolczi
,
L.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
, 2005, “
Morphology of Elastase-Induced Cerebral Aneurysm Model in Rabbit and Rapid Prototyping of Elastomeric Transparent Replicas
,”
Biorheology
0006-355X,
42
(
5
), pp.
345
361
.
11.
Loth
,
F.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Bassiouny
,
H. S.
,
Glagov
,
S.
, and
Zarins
,
C. K.
, 1997, “
Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
2
), pp.
187
194
.
12.
Morris
,
L.
,
Delassus
,
P.
,
Callanan
,
A.
,
Walsh
,
M.
,
Wallis
,
F.
,
Grace
,
P.
, and
McGloughlin
,
T.
, 2005, “
3D Numerical Simulation of Blood Flow Through Models of the Human Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
767
775
.
13.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
de Tolosa
,
E. M. C.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
de Silva
,
E. S.
, 2005, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
39
(
16
), pp.
3010
3016
.
14.
O’Brien
,
T.
,
Morris
,
L.
,
O’Donnell
,
M.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, 2005, “
Injection-Moulded Models of Major and Minor Arteries: The Variability of Model Wall Thickness Owing to Casting Technique
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
219
, pp.
381
386
.
15.
Marins
,
P. A. L. S.
,
Natal Jorge
,
R. M.
, and
Ferreira
,
A. J. M.
, 2006, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.
16.
Chong
,
C. K.
,
Rowe
,
C. S.
,
Sivanesan
,
S.
,
Rattray
,
A.
,
Black
,
R. A.
,
Shortland
,
A. P.
, and
How
,
T. V.
, 1999, “
Computer Aided Design and Fabrication of Models for In Vitro Studies of Vascular Fluid Dynamics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
213
, pp.
1
4
.
17.
Nicholls
,
S. C.
,
Gardner
,
J. B.
,
Meissner
,
M. H.
, and
Johansen
,
H. K.
, 1998, “
Rupture in Small Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
28
, pp.
884
888
.
18.
Gullace
,
G.
, and
Ruffa
,
F.
, 1995, “
Effect of Pravastatin on Abdominal Aorta and Carotid Wall Thickness in Dyslipidemia
,”
J. Am. Coll. Cardiol.
0735-1097,
25
(
2
), pp.
369A
370A
.
19.
Li
,
Z.
, and
Kleinstreuer
,
C.
, 2005, “
Blood Flow and Structure Interactions in a Stented Abdominal Aortic Aneurysm Model
,”
Med. Eng. Phys.
1350-4533,
27
, pp.
369
382
.
20.
Scotti
,
C. M.
, and
Finol
,
E. A.
, 2007, “
Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid-Structure Interaction Study
,”
Comput. Struct.
0045-7949,
85
, pp.
1097
1113
.
21.
Leung
,
J. H.
,
Wright
,
A. R.
,
Cheshire
,
N.
,
Crane
,
J.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Xu
,
Y.
, 2006, “
Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison With Solid Stress Models
,”
Biomed. Eng. Online
1475-925X,
5
;33.
22.
Gao
,
F.
,
Watanabe
,
M.
, and
Matsuzawa
,
T.
, 2006, “
Stress Analysis in a Layered Aortic Arch Model Under Pulsatile Blood Flow
,”
Biomed. Eng. Online
1475-925X,
5
;25.
23.
Callanan
,
A.
,
Morris
,
L.
, and
McGloughlin
,
T.
, 2004, “
Numerical and Experimental Analysis of an Idealized Abdominal Aortic Aneurysm
,” European Society of Biomechanics, S-Hertogenbosch, Netherlands.
You do not currently have access to this content.