Abstract

Due to lack of full vascularization, the meniscus relies on diffusion through the extracellular matrix to deliver small (e.g., nutrients) and large (e.g., proteins) to resident cells. Under normal physiological conditions, the meniscus undergoes up to 20% compressive strains. While previous studies characterized solute diffusivity in the uncompressed meniscus, to date, little is known about the diffusive transport under physiological strain levels. This information is crucial to fully understand the pathophysiology of the meniscus. The objective of this study was to investigate strain-dependent diffusive properties of the meniscus fibrocartilage. Tissue samples were harvested from the central portion of porcine medial menisci and tested via fluorescence recovery after photobleaching to measure diffusivity of fluorescein (332 Da) and 40 K Da dextran (D40K) under 0%, 10%, and 20% compressive strain. Specifically, average diffusion coefficient and anisotropic ratio, defined as the ratio of the diffusion coefficient in the direction of the tissue collagen fibers to that orthogonal, were determined. For all the experimental conditions investigated, fluorescein diffusivity was statistically faster than that of D40K. Also, for both molecules, diffusion coefficients significantly decreased, up to ∼45%, as the strain increased. In contrast, the anisotropic ratios of both molecules were similar and not affected by the strain applied to the tissue. This suggests that compressive strains used in this study did not alter the diffusive pathways in the meniscus. Our findings provide new knowledge on the transport properties of the meniscus fibrocartilage that can be leveraged to further understand tissue pathophysiology and approaches to tissue restoration.

References

1.
Shrive
,
N. G.
,
O'Connor
,
J. J.
, and
Goodfellow
,
J. W.
,
1978
, “
Load-Bearing in the Knee Joint
,”
Clin. Orthop. Relat. Res.
,
131
, pp.
279
287
.https://europepmc.org/article/med/657636
2.
Athanasiou
,
K. A.
, and
Sanchez-Adams
,
J.
,
2009
, “
Engineering the Knee Meniscus
,”
Synth. Lect. Tissue Eng.
,
1
(
1
), pp.
1
97
.10.2200/S00186ED1V01Y200903TIS001
3.
Fox
,
A. J. S.
,
Bedi
,
A.
, and
Rodeo
,
S. A.
,
,
2012
, “
The Basic Science of Human Knee Menisci: Structure, Composition, and Function
,”
Sports Health
,
4
(
4
), pp.
340
351
.10.1177/1941738111429419
4.
Hagino
,
T.
,
Ochiai
,
S.
,
Senga
,
S.
,
Yamashita
,
T.
,
Wako
,
M.
,
Ando
,
T.
, and
Haro
,
H.
,
2015
, “
Meniscal Tears Associated With Anterior Cruciate Ligament Injury
,”
Arch. Orthop. Trauma Surg.
,
135
(
12
), pp.
1701
1706
.10.1007/s00402-015-2309-4
5.
Joseph
,
A. M.
,
Collins
,
C. L.
,
Henke
,
N. M.
,
Yard
,
E. E.
,
Fields
,
S. K.
, and
Comstock
,
R. D.
,
2013
, “
A Multisport Epidemiologic Comparison of Anterior Cruciate Ligament Injuries in High School Athletics
,”
J. Athletic Train.
,
48
(
6
), pp.
810
817
.10.4085/1062-6050-48.6.03
6.
Murphy
,
L.
, and
Helmick
,
C. G.
,
2012
, “
The Impact of Osteoarthritis in the United States: A Population-Health Perspective
,”
AJN Am. J. Nurs.
,
112
(
3
), pp.
S13
S19
.10.1097/01.NAJ.0000412646.80054.21
7.
Murphy
,
C. A.
,
Garg
,
A. K.
,
Silva-Correia
,
J.
,
Reis
,
R. L.
,
Oliveira
,
J. M.
, and
Collins
,
M. N.
,
2019
, “
The Meniscus in Normal and Osteoarthritic Tissues: Facing the Structure Property Challenges and Current Treatment Trends
,”
Annu. Rev. Biomed. Eng.
,
21
(
1
), pp.
495
521
.10.1146/annurev-bioeng-060418-052547
8.
Mordecai
,
S. C.
,
Al-Hadithy
,
N.
,
Ware
,
H. E.
, and
Gupte
,
C. M.
,
2014
, “
Treatment of Meniscal Tears: An Evidence Based Approach
,”
World J. Orthop.
,
5
(
3
), pp.
233
241
.10.5312/wjo.v5.i3.233
9.
Bilgen
,
B.
,
Jayasuriya
,
C. T.
, and
Owens
,
B. D.
,
2018
, “
Current Concepts in Meniscus Tissue Engineering and Repair
,”
Adv. Healthcare Mater.
,
7
(
11
), p.
1701407
.10.1002/adhm.201701407
10.
Abbadessa
,
A.
,
Crecente-Campo
,
J.
, and
Alonso
,
M. J.
,
2021
, “
Engineering Anisotropic Meniscus: Zonal Functionality and Spatiotemporal Drug Delivery
,”
Tissue Eng., Part B
,
27
(
2
), pp.
133
154
.10.1089/ten.teb.2020.0096
11.
Makris
,
E. A.
,
Hadidi
,
P.
, and
Athanasiou
,
K. A.
,
2011
, “
The Knee Meniscus: Structure–Function, Pathophysiology, Current Repair Techniques, and Prospects for Regeneration
,”
Biomaterials
,
32
(
30
), pp.
7411
7431
.10.1016/j.biomaterials.2011.06.037
12.
Arnoczky
,
S. P.
, and
Warren
,
R. F.
,
1982
, “
Microvasculature of the Human Meniscus
,”
Am. J. Sports Med.
,
10
(
2
), pp.
90
95
.10.1177/036354658201000205
13.
Pereira
,
H.
,
Silva-Correia
,
J.
,
Oliveira
,
J. M.
,
Reis
,
R. L.
, and
Espregueira-Mendes
,
J.
, 2013,
The Meniscus: Basic Science
, Meniscal Transplantation,
Springer
,
Berlin
, pp.
7
14
.
14.
Greis
,
P. E.
,
Bardana
,
D. D.
,
Holmstrom
,
M. C.
, and
Burks
,
R. T.
,
2002
, “
Meniscal Injury: I. Basic Science and Evaluation
,”
J. Am. Acad. Orthop. Surg.
,
10
(
3
), pp.
168
176
.10.5435/00124635-200205000-00003
15.
Travascio
,
F.
, and
Jackson
,
A. R.
,
2017
, “
The Nutrition of the Human Meniscus: A Computational Analysis Investigating the Effect of Vascular Recession on Tissue Homeostasis
,”
J. Biomech.
,
61
, pp.
151
159
.10.1016/j.jbiomech.2017.07.019
16.
Travascio
,
F.
,
Devaux
,
F.
,
Volz
,
M.
, and
Jackson
,
A. R.
,
2020
, “
Molecular and Macromolecular Diffusion in Human Meniscus: Relationships With Tissue Structure and Composition
,”
Osteoarthritis Cartilage
,
28
(
3
), pp.
375
382
.10.1016/j.joca.2019.12.006
17.
Travascio
,
F.
,
Zhao
,
W.
, and
Gu
,
W. Y.
,
2009
, “
Characterization of Anisotropic Diffusion Tensor of Solute in Tissue by video-FRAP Imaging Technique
,”
Ann. Biomed. Eng.
,
37
(
4
), pp.
813
823
.10.1007/s10439-009-9655-8
18.
Kleinhans
,
K. L.
,
Jaworski
,
L. M.
,
Schneiderbauer
,
M. M.
, and
Jackson
,
A. R.
,
2015
, “
Effect of Static Compressive Strain, Anisotropy, and Tissue Region on the Diffusion of Glucose in Meniscus Fibrocartilage
,”
ASME J. Biomech. Eng.
,
137
(
10
), p.
101004
.10.1115/1.4031118
19.
McHenry
,
J. A.
,
Zielinska
,
B.
, and
Haut Donahue
,
T. L.
,
2006
, “
Proteoglycan Breakdown of Meniscal Explants Following Dynamic Compression Using a Novel Bioreactor
,”
Ann. Biomed. Eng.
,
34
(
11
), pp.
1758
1766
.10.1007/s10439-006-9178-5
20.
Lai
,
J. H.
, and
Levenston
,
M. E.
,
2010
, “
Meniscus and Cartilage Exhibit Distinct Intra-Tissue Strain Distributions Under Unconfined Compression
,”
Osteoarthritis Cartilage
,
18
(
10
), pp.
1291
1299
.10.1016/j.joca.2010.05.020
21.
Kolaczek
,
S.
,
Hewison
,
C.
,
Caterine
,
S.
,
Ragbar
,
M. X.
,
Getgood
,
A.
, and
Gordon
,
K. D.
,
2016
, “
Analysis of 3D Strain in the Human Medial Meniscus
,”
J. Mech. Behav. Biomed. Mater.
,
63
, pp.
470
475
.10.1016/j.jmbbm.2016.06.001
22.
Jackson
,
A. R.
,
Yuan
,
T. Y.
,
Huang
,
C. Y. C.
,
Travascio
,
F.
, and
Gu
,
W. Y.
,
2008
, “
Effect of Compression and Anisotropy on the Diffusion of Glucose in Annulus Fibrosus
,”
Spine
,
33
(
1
), pp.
1
7
.10.1097/BRS.0b013e31815e4136
23.
Abraham
,
A. C.
,
Edwards
,
C. R.
,
Odegard
,
G. M.
, and
Donahue
,
T. L. H.
,
2011
, “
Regional and Fiber Orientation Dependent Shear Properties and Anisotropy of Bovine Meniscus
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
2024
2030
.10.1016/j.jmbbm.2011.06.022
24.
Norberg
,
C.
,
Filippone
,
G.
,
Andreopoulos
,
F.
,
Best
,
T. M.
,
Baraga
,
M.
,
Jackson
,
A. R.
, and
Travascio
,
F.
,
2021
, “
Viscoelastic and Equilibrium Shear Properties of Human Meniscus: Relationships With Tissue Structure and Composition
,”
J. Biomech.
,
120
, p.
110343
.10.1016/j.jbiomech.2021.110343
25.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
,
2001
, “
Static Compression of Articular Cartilage Can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
,
34
(
11
), pp.
1463
1469
.10.1016/S0021-9290(01)00112-9
26.
Leddy
,
H. A.
, and
Guilak
,
F.
,
2008
, “
Site-Specific Effects of Compression on Macromolecular Diffusion in Articular Cartilage
,”
Biophys. J.
,
95
(
10
), pp.
4890
4895
.10.1529/biophysj.108.137752
27.
Ogston
,
A. G.
,
Preston
,
B. N.
, and
Wells
,
J. D.
,
1973
, “
On the Transport of Compact Particles through Solutions of Chain-Polymers
,”
Proc. R. Soc. London, Ser. A
,
333
(
1594
), pp.
297
316
.10.1098/rspa.1973.0064
28.
Jackson
,
A. R.
,
Travascio
,
F.
, and
Gu
,
W. Y.
,
2009
, “
Effect of Mechanical Loading on Electrical Conductivity in Human Intervertebral Disk
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
054505
.10.1115/1.3116152
29.
Travascio
,
F.
,
Jackson
,
A. R.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2009
, “
Relationship Between Solute Transport Properties and Tissue Morphology in Human Annulus Fibrosus
,”
J. Orthop. Res.
,
27
(
12
), pp.
1625
1630
.10.1002/jor.20927
30.
Travascio
,
F.
,
Valladares-Prieto
,
S.
, and
Jackson
,
A. R.
,
2020
, “
Effects of Solute Size and Tissue Composition on Molecular and Macromolecular Diffusivity in Human Knee Cartilage
,”
Osteoarthritis Cartilage Open
,
2
(
4
), p.
100087
.10.1016/j.ocarto.2020.100087
31.
Travascio
,
F.
, and
Gu
,
W. Y.
,
2007
, “
Anisotropic Diffusive Transport in Annulus Fibrosus: Experimental Determination of the Diffusion Tensor by FRAP Technique
,”
Ann. Biomed. Eng.
,
35
(
10
), pp.
1739
1748
.10.1007/s10439-007-9346-2
32.
Leddy
,
H. A.
, and
Guilak
,
F.
,
2003
, “
Site-Specific Molecular Diffusion in Articular Cartilage Measured Using Fluorescence Recovery After Photobleaching
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
753
760
.10.1114/1.1581879
33.
Leddy
,
H. A.
,
Haider
,
M. A.
, and
Guilak
,
F.
,
2006
, “
Diffusional Anisotropy in Collagenous Tissues: Fluorescence Imaging of Continuous Point Photobleaching
,”
Biophys. J.
,
91
(
1
), pp.
311
316
.10.1529/biophysj.105.075283
34.
Shi
,
C.
,
Kuo
,
J.
,
Bell
,
P. D.
, and
Yao
,
H.
,
2010
, “
Anisotropic Solute Diffusion Tensor in Porcine TMJ Discs Measured by FRAP With Spatial Fourier Analysis
,”
Ann. Biomed. Eng.
,
38
(
11
), pp.
3398
3408
.10.1007/s10439-010-0099-y
35.
Shi
,
C.
,
Wright
,
G. J.
,
Ex-Lubeskie
,
C. L.
,
Bradshaw
,
A. D.
, and
Yao
,
H.
,
2013
, “
Relationship Between Anisotropic Diffusion Properties and Tissue Morphology in Porcine TMJ Disc
,”
Osteoarthritis Cartilage
,
21
(
4
), pp.
625
633
.10.1016/j.joca.2013.01.010
36.
Armstrong
,
J. K.
,
Wenby
,
R. B.
,
Meiselman
,
H. J.
, and
Fisher
,
T. C.
,
2004
, “
The Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell Aggregation
,”
Biophys. J.
,
87
(
6
), pp.
4259
4270
.10.1529/biophysj.104.047746
37.
Travascio
,
F.
, and
Gu
,
W. Y.
,
2011
, “
Simultaneous Measurement of Anisotropic Solute Diffusivity and Binding Reaction Rates in Biological Tissues by FRAP
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
53
65
.10.1007/s10439-010-0138-8
38.
Amsden
,
B.
,
1998
, “
Solute Diffusion Within Hydrogels. Mechanisms and Models
,”
Macromolecules
,
31
(
23
), pp.
8382
8395
.10.1021/ma980765f
39.
Sanchez-Marin
,
F. J.
,
2001
, “
Automatic Recognition of Biological Shapes Using the Hotelling Transform
,”
Comput. Biol. Med.
,
31
(
2
), pp.
85
99
.10.1016/S0010-4825(00)00027-5
40.
Morejon
,
A.
,
Norberg
,
C.
,
De Rosa
,
M.
,
Best
,
T. M.
,
Jackson
,
A. R.
, and
Travascio
,
F.
,
2021
, “
Compressive Properties and Hydraulic Permeability of Human Meniscus: Relationships With Tissue Structure and Composition
,”
Front. Bioeng. Biotechnol.
,
8
, p.
1559
.10.3389/fbioe.2020.622552
41.
Fetter
,
N. L.
,
Leddy
,
H. A.
,
Guilak
,
F.
, and
Nunley
,
J. A.
,
2006
, “
Composition and Transport Properties of Human Ankle and Knee Cartilage
,”
J. Orthop. Res.
,
24
(
2
), pp.
211
219
.10.1002/jor.20029
42.
Ngwa
,
W.
,
Geier
,
O.
,
Stallmach
,
F.
,
Naji
,
L.
,
Schiller
,
J.
, and
Arnold
,
K.
,
2002
, “
Cation Diffusion in Cartilage Measured by Pulsed Field Gradient NMR
,”
Eur. Biophys. J.
,
31
(
1
), pp.
73
80
.10.1007/s002490100184
43.
Gu
,
W. Y.
,
Yao
,
H.
,
Vega
,
A. L.
, and
Flagler
,
D.
,
2004
, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1710
1717
.10.1007/s10439-004-7823-4
44.
Kuo
,
J.
,
Wright
,
G. J.
,
Bach
,
D. E.
,
Slate
,
E. H.
, and
Yao
,
H.
,
2011
, “
Effect of Mechanical Loading on Electrical Conductivity in Porcine TMJ Discs
,”
J. Dent. Res.
,
90
(
10
), pp.
1216
1220
.10.1177/0022034511415275
45.
Jackson
,
A. R.
,
Yao
,
H.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2006
, “
Anisotropic Ion Diffusivity in Intervertebral Disc: An Electrical Conductivity Approach
,”
Spine
,
31
(
24
), pp.
2783
2789
.10.1097/01.brs.0000245842.02717.1b
46.
Jackson
,
A. R.
,
Yuan
,
T. Y.
,
Huang
,
C. Y.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2012
, “
Nutrient Transport in Human Annulus Fibrosus is Affected by Compressive Strain and Anisotropy
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2551
2558
.10.1007/s10439-012-0606-4
47.
de Visser
,
S. K.
,
Crawford
,
R. W.
, and
Pope
,
J. M.
,
2008
, “
Structural Adaptations in Compressed Articular Cartilage Measured by Diffusion Tensor Imaging
,”
Osteoarthritis Cartilage
,
16
(
1
), pp.
83
89
.10.1016/j.joca.2007.05.013
48.
Meder
,
R.
,
de Visser
,
S. K.
,
Bowden
,
J. C.
,
Bostrom
,
T.
, and
Pope
,
J. M.
,
2006
, “
Diffusion Tensor Imaging of Articular Cartilage as a Measure of Tissue Microstructure
,”
Osteoarthritis Cartilage
,
14
(
9
), pp.
875
881
.10.1016/j.joca.2006.03.002
49.
Filidoro
,
L.
,
Dietrich
,
O.
,
Weber
,
J.
,
Rauch
,
E.
,
Oerther
,
T.
,
Wick
,
M.
,
Reiser
,
M. F.
, and
Glaser
,
C.
,
2005
, “
High-Resolution Diffusion Tensor Imaging of Human Patellar Cartilage: Feasibility and Preliminary Findings
,”
Magn. Reson. Med.
,
53
(
5
), pp.
993
998
.10.1002/mrm.20469
50.
Hsu
,
E. W.
, and
Setton
,
L. A.
,
1999
, “
Diffusion Tensor Microscopy of the Intervertebral Disc Anulus Fibrosus
,”
Magn. Reson. Med.
,
41
(
5
), pp.
992
999
.10.1002/(SICI)1522-2594(199905)41:5<992::AID-MRM19>3.0.CO;2-Y
51.
Chu
,
C. R.
,
Szczodry
,
M.
, and
Bruno
,
S.
,
2010
, “
Animal Models for Cartilage Regeneration and Repair
,”
Tissue Eng., Part B
,
16
(
1
), pp.
105
115
.10.1089/ten.teb.2009.0452
52.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2005
, “
Biomechanical Characteristics of the Normal Medial and Lateral Porcine Knee Menisci
,”
Proc. Inst. Mech. Eng., Part H
,
219
(
1
), pp.
53
62
.10.1243/095441105X9174
53.
Sweigart
,
M. A.
,
Zhu
,
C. F.
,
Burt
,
D. M.
,
DeHoll
,
P. D.
,
Agrawal
,
C. M.
,
Clanton
,
T. O.
, and
Athanasiou
,
K. A.
,
2004
, “
Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1569
1579
.10.1114/B:ABME.0000049040.70767.5c
54.
Deponti
,
D.
,
Giancamillo
,
A. D.
,
Scotti
,
C.
,
Peretti
,
G. M.
, and
Martin
,
I.
,
2015
, “
Animal Models for Meniscus Repair and Regeneration
,”
J. Tissue Eng. Regener. Med.
,
9
(
5
), pp.
512
527
.10.1002/term.1760
55.
Proctor
,
C. S.
,
Schmidt
,
M. B.
,
Whipple
,
R. R.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1989
, “
Material Properties of the Normal Medial Bovine Meniscus
,”
J. Orthop. Res.
,
7
(
6
), pp.
771
782
.10.1002/jor.1100070602
56.
Fithian
,
D. C.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1990
, “
Material Properties and Structure–Function Relationships in the Menisci
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
19
31
.https://europepmc.org/article/med/2406069
57.
Sanchez-Adams
,
J.
,
Willard
,
V. P.
, and
Athanasiou
,
K. A.
,
2011
, “
Regional Variation in the Mechanical Role of Knee Meniscus Glycosaminoglycans
,”
J. Appl. Physiol.
,
111
(
6
), pp.
1590
1596
.10.1152/japplphysiol.00848.2011
58.
Bursac
,
P.
,
Arnoczky
,
S.
, and
York
,
A.
,
2009
, “
Dynamic Compressive Behavior of Human Meniscus Correlates With Its Extra-Cellular Matrix Composition
,”
Biorheology
,
46
(
3
), pp.
227
237
.10.3233/BIR-2009-0537
59.
Morejon
,
A.
,
Mantero
,
A. M.
,
Best
,
T. M.
,
Jackson
,
A. R.
, and
Travascio
,
F.
,
2022
, “
Mechanisms of Energy Dissipation and Relationship With Tissue Composition in Human Meniscus
,”
Osteoarthritis Cartilage
,
30
(
4
), pp.
605
612
.10.1016/j.joca.2022.01.001
60.
De Rosa
,
M.
,
Filippone
,
G.
,
Best
,
T. M.
,
Jackson
,
A. R.
, and
Travascio
,
F.
,
2022
, “
Mechanical Properties of Meniscal Circumferential Fibers Using an Inverse Finite Element Analysis Approach
,”
J. Mech. Behav. Biomed. Mater.
,
126
, p.
105073
.10.1016/j.jmbbm.2022.105073
You do not currently have access to this content.