Abstract

Thrombosis and intimal hyperplasia have remained the major failure mechanisms of small-diameter vascular grafts used in bypass procedures. While most efforts to reduce thrombogenicity have used a biochemical surface modification approach, the use of local mechanical phenomena to aid in this goal has received somewhat less attention. In this work, the mechanical, fluid transport, and geometrical properties of a layered and porous vascular graft are optimized within a porohyperelastic finite element framework to maximize self-cleaning via luminal reversal fluid velocity (into the lumen). This is expected to repel platelets as well as inhibit the formation of and/or destabilize adsorbed protein layers thereby reducing thrombogenic potential. A particle swarm optimization algorithm was utilized to maximize luminal reversal fluid velocity while also compliance matching our graft to a target artery (rat aorta). The maximum achievable luminal reversal fluid velocity was approximately 246 μm/s without simultaneously optimizing for host compliance. Simultaneous optimization of reversal flow and compliance resulted in a luminal reversal fluid velocity of 59 μm/s. Results indicate that a thick highly permeable compressible inner layer and a thin low permeability incompressible outer layer promote intraluminal reversal fluid velocity. Future research is needed to determine the feasibility of fabricating such a layered and optimized graft and verify its ability to improve hemocompatibility.

References

1.
Virani
,
S. S.
,
Alonso
,
A.
,
Aparicio
,
H. J.
,
Benjamin
,
E. J.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
, et al.,
2021
, “
Heart Disease and Stroke Statistics-2021 Update: A Report From the american Heart Association
,”
Circulation
,
143
(
8
), pp.
e254
e743
.10.1161/CIR.0000000000000950
2.
Libby
,
P.
,
Buring
,
J. E.
,
Badimon
,
L.
,
Hansson
,
G. K.
,
Deanfield
,
J.
,
Bittencourt
,
M. S.
,
Tokgözoğlu
,
L.
, and
Lewis
,
E. F.
,
2019
, “
Atherosclerosis
,”
Nat. Rev. Dis. Primers
,
5
(
1
), p.
56
.10.1038/s41572-019-0106-z
3.
Desai
,
M.
,
Seifalian
,
A. M.
, and
Hamilton
,
G.
,
2011
, “
Role of Prosthetic Conduits in Coronary Artery Bypass Grafting
,”
Eur. J. Cardiothorac. Surg.
,
40
(
2
), pp.
394
398
.10.1016/j.ejcts.2010.11.050
4.
Aavik
,
A.
,
Kibur
,
R. T.
,
Lieberg
,
J.
,
Lepner
,
U.
,
Aunapuu
,
M.
, and
Arend
,
A.
,
2019
, “
Cold-Stored Venous Allografts in Different Preserving Solutions: A Study on Changes in Vein Wall Morphology
,”
Scand. J. Surg.
,
108
(
1
), pp.
67
75
.10.1177/1457496918783728
5.
Ravi
,
S.
, and
Chaikof
,
E. L.
,
2010
, “
Biomaterials for Vascular Tissue Engineering
,”
Regen. Med.
,
5
(
1
), pp.
107
120
.10.2217/rme.09.77
6.
Seifu
,
D. G.
,
Purnama
,
A.
,
Mequanint
,
K.
, and
Mantovani
,
D.
,
2013
, “
Small-Diameter Vascular Tissue Engineering
,”
Nat. Rev. Cardiol.
,
10
(
7
), pp.
410
421
.10.1038/nrcardio.2013.77
7.
Hoshi
,
R. A.
,
Van Lith
,
R.
,
Jen
,
M. C.
,
Allen
,
J. B.
,
Lapidos
,
K. A.
, and
Ameer
,
G.
,
2013
, “
The Blood and Vascular Cell Compatibility of Heparin-Modified Eptfe Vascular Grafts
,”
Biomaterials
,
34
(
1
), pp.
30
41
.10.1016/j.biomaterials.2012.09.046
8.
Kuang
,
H.
,
Wang
,
Y.
,
Hu
,
J.
,
Wang
,
C.
,
Lu
,
S.
, and
Mo
,
X.
,
2018
, “
A Method for Preparation of an Internal Layer of Artificial Vascular Graft co-Modified With Salvianolic Acid b and Heparin
,”
ACS Appl. Mater. Interfaces
,
10
(
23
), pp.
19365
19372
.10.1021/acsami.8b02602
9.
Qiu
,
X.
,
Lee
,
B. L.
,
Ning
,
X.
,
Murthy
,
N.
,
Dong
,
N.
, and
Li
,
S.
,
2017
, “
End-Point Immobilization of Heparin on Plasma-Treated Surface of Electrospun Polycarbonate-Urethane Vascular Graft
,”
Acta Biomater.
,
51
, pp.
138
147
.10.1016/j.actbio.2017.01.012
10.
Lin
,
P. H.
,
Bush
,
R. L.
,
Yao
,
Q.
,
Lumsden
,
A. B.
, and
Chen
,
C.
,
2004
, “
Evaluation of Platelet Deposition and Neointimal Hyperplasia of Heparin-Coated Small-Caliber Eptfe Grafts in a Canine Femoral Artery Bypass Model
,”
J. Surg. Res.
,
118
(
1
), pp.
45
52
.10.1016/j.jss.2003.12.026
11.
Bosiers
,
M.
,
Deloose
,
K.
,
Verbist
,
J.
,
Schroe
,
H.
,
Lauwers
,
G.
,
Lansink
,
W.
, and
Peeters
,
P.
,
2006
, “
Heparin-Bonded Expanded Polytetrafluoroethylene Vascular Graft for Femoropopliteal and Femorocrural Bypass Grafting: 1-Year Results
,”
J. Vasc. Surg.
,
43
(
2
), pp.
313
318
, discussion 318–319.10.1016/j.jvs.2005.10.037
12.
Pulli
,
R.
,
Dorigo
,
W.
,
Castelli
,
P.
,
Dorrucci
,
V.
,
Ferilli
,
F.
,
De Blasis
,
G.
,
Monaca
,
V.
,
Vecchiati
,
E.
,
Pratesi
,
C.
, and
Propaten Italian Registry
,
G.
,
2010
, “
Midterm Results From a Multicenter Registry on the Treatment of Infrainguinal Critical Limb Ischemia Using a Heparin-Bonded Eptfe Graft
,”
J Vasc. Surg.
,
51
(
5
), pp.
1167
1177e1
.10.1016/j.jvs.2009.12.042
13.
Ahmed
,
I.
,
Majeed
,
A.
, and
Powell
,
R.
,
2007
, “
Heparin Induced Thrombocytopenia: Diagnosis and Management Update
,”
Postgrad. Med. J.
,
83
(
983
), pp.
575
582
.10.1136/pgmj.2007.059188
14.
Deglau
,
T. E.
,
Maul
,
T. M.
,
Villanueva
,
F. S.
, and
Wagner
,
W. R.
,
2012
, “
In Vivo Peg Modification of Vascular Surfaces for Targeted Delivery
,”
J. Vasc. Surg.
,
55
(
4
), pp.
1087
1095
.10.1016/j.jvs.2011.09.081
15.
Tatterton
,
M.
,
Wilshaw
,
S. P.
,
Ingham
,
E.
, and
Homer-Vanniasinkam
,
S.
,
2012
, “
The Use of Antithrombotic Therapies in Reducing Synthetic Small-Diameter Vascular Graft Thrombosis
,”
Vasc. Endovasc. Surg.
,
46
(
3
), pp.
212
222
.10.1177/1538574411433299
16.
Deglau
,
T. E.
,
Johnson
,
J. D.
,
Villanueva
,
F. S.
, and
Wagner
,
W. R.
,
2007
, “
Targeting Microspheres and Cells to Polyethylene Glycol-Modified Biological Surfaces
,”
J. Biomed. Mater. Res. A
,
81A
(
3
), pp.
578
585
.10.1002/jbm.a.31092
17.
Hu
,
Y. T.
,
Pan
,
X. D.
,
Zheng
,
J.
,
Ma
,
W. G.
, and
Sun
,
L. Z.
,
2017
, “
In Vitro and In Vivo Evaluation of a Small-Caliber Coaxial Electrospun Vascular Graft Loaded With Heparin and VEGF
,”
Int. J. Surg.
,
44
, pp.
244
249
.10.1016/j.ijsu.2017.06.077
18.
Antonova
,
L. V.
,
Seifalian
,
A. M.
,
Kutikhin
,
A. G.
,
Sevostyanova
,
V. V.
,
Matveeva
,
V. G.
,
Velikanova
,
E. A.
,
Mironov
,
A. V.
, et al.,
2016
, “
Conjugation With RGD Peptides and Incorporation of Vascular Endothelial Growth Factor Are Equally Efficient for Biofunctionalization of Tissue-Engineered Vascular Grafts
,”
Int. J. Mol. Sci.
,
17
(
11
), p.
1920
.10.3390/ijms17111920
19.
Tucker
,
E. I.
,
Marzec
,
U. M.
,
White
,
T. C.
,
Hurst
,
S.
,
Rugonyi
,
S.
,
McCarty
,
O. J.
,
Gailani
,
D.
,
Gruber
,
A.
, and
Hanson
,
S. R.
,
2009
, “
Prevention of Vascular Graft Occlusion and Thrombus-Associated Thrombin Generation by Inhibition of Factor XI
,”
Blood
,
113
(
4
), pp.
936
944
.10.1182/blood-2008-06-163675
20.
Feys
,
H. B.
,
Roodt
,
J.
,
Vandeputte
,
N.
,
Pareyn
,
I.
,
Mottl
,
H.
,
Hou
,
S.
,
Lamprecht
,
S.
,
Van Rensburg
,
W. J.
,
Deckmyn
,
H.
, and
Vanhoorelbeke
,
K.
,
2012
, “
Inhibition of Von Willebrand Factor-Platelet Glycoprotein ib Interaction Prevents and Reverses Symptoms of Acute Acquired Thrombotic Thrombocytopenic Purpura in Baboons
,”
Blood
,
120
(
17
), pp.
3611
3614
.10.1182/blood-2012-04-421248
21.
Torem
,
S.
,
Schneider
,
P. A.
, and
Hanson
,
S. R.
,
1988
, “
Monoclonal Antibody-Induced Inhibition of Platelet Function: Effects on Hemostasis and Vascular Graft Thrombosis in Baboons
,”
J. Vasc. Surg.
,
7
(
1
), pp.
172
180
.10.1016/0741-5214(88)90390-4
22.
Dong
,
X.
,
Yuan
,
X.
,
Wang
,
L.
,
Liu
,
J.
,
Midgley
,
A. C.
,
Wang
,
Z.
,
Wang
,
K.
,
Liu
,
J.
,
Zhu
,
M.
, and
Kong
,
D.
,
2018
, “
Construction of a Bilayered Vascular Graft With Smooth Internal Surface for Improved Hemocompatibility and Endothelial Cell Monolayer Formation
,”
Biomaterials
,
181
, pp.
1
14
.10.1016/j.biomaterials.2018.07.027
23.
Pocivavsek
,
L.
,
Ye
,
S. H.
,
Pugar
,
J.
,
Tzeng
,
E.
,
Cerda
,
E.
,
Velankar
,
S.
, and
Wagner
,
W. R.
,
2019
, “
Active Wrinkles to Drive Self-Cleaning: A Strategy for Anti-Thrombotic Surfaces for Vascular Grafts
,”
Biomaterials
,
192
, pp.
226
234
.10.1016/j.biomaterials.2018.11.005
24.
Ayyalasomayajula
,
A.
,
Vande Geest
,
J. P.
, and
Simon
,
B. R.
,
2010
, “
Porohyperelastic Finite Element Modeling of Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
132
(
10
), p.
104502
.10.1115/1.4002370
25.
Vande Geest
,
J. P.
,
Simon
,
B. R.
,
Rigby
,
P. H.
, and
Newberg
,
T. P.
,
2011
, “
Coupled Porohyperelastic Mass Transport (Phexpt) Finite Element Models for Soft Tissues Using Abaqus
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
044502
.10.1115/1.4003489
26.
Simon
,
B. R.
,
Kaufman
,
M. V.
,
Liu
,
J.
, and
Baldwin
,
A. L.
,
1998
, “
Porohyperelastic-Transport-Swelling Theory, Material Properties and Finite Element Models for Large Arteries
,”
Int. J. Solids Struct.
,
35
(
34–35
), pp.
5021
5031
.10.1016/S0020-7683(98)00107-3
27.
Simon
,
B.
,
Kaufmann
,
M.
,
McAfee
,
M.
,
Baldwin
,
A. L.
, and
Wilson
,
L.
,
1998
, “
Identification and Determination of Iviaterial Properties for Porohyperelastic Analysis of Large Arteries
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
188
194
.10.1115/1.2798301
28.
Smith
,
M.
,
2009
,
ABAQUS/Standard User's Manual, Version 6.9
,
Dassault Systèmes Simulia Corp
.,
Providence, RI
.
29.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London Ser. A
,
243
(
865
), p.
38
.10.1098/rsta.1951.0004
30.
Slaughter
,
W. S.
,
2002
,
The Linearized Theory of Elasticity
,
Birkhäuser
,
Boston, MA
.
31.
Tan
,
I.
,
Butlin
,
M.
,
Liu
,
Y. Y.
,
Ng
,
K.
, and
Avolio
,
A. P.
,
2012
, “
Heart Rate Dependence of Aortic Pulse Wave Velocity at Different Arterial Pressures in Rats
,”
Hypertension
,
60
(
2
), pp.
528
533
.10.1161/HYPERTENSIONAHA.112.194225
32.
Pacher
,
P.
,
Mabley
,
J. G.
,
Liaudet
,
L.
,
Evgenov
,
O.
,
Marton
,
A.
,
Hasko
,
G.
,
Kollai
,
M.
, and
C
,
S.
,
2004
, “
Left Ventricular Pressure-Volume Relationship in a Rat Model of Advanced Aging-Associated Heart Failure
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
5
), p. H2132-7.10.1152/ajpheart.00405.2004
33.
Ohga
,
Y.
,
Sakata
,
S.
,
Takenaka
,
C.
,
Abe
,
T.
,
Tsuji
,
T.
,
Taniguchi
,
S.
, and
Takaki
,
M.
,
2002
, “
Cardiac Dysfunction in Terms of Left Ventricular Mechanical Work and Energetics in Hypothyroid Rats
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
2
), pp.
H631
H641
.10.1152/ajpheart.00046.2002
34.
Nabovati
,
A.
,
Llewellin
,
E. W.
, and
Sousa
,
A. C. M.
,
2009
, “
A General Model for the Permeability of Fibrous Porous Media Based on Fluid Flow Simulations Using the Lattice Boltzmann Method
,”
Composites, Part A
,
40
(
6–7
), pp.
860
869
.10.1016/j.compositesa.2009.04.009
35.
Kennedy
,
J.
, and
Eberhart
,
R. C.
,
2001
,
Swarm Intelligence
,
Morgan Kaufmann Publishers Inc
.,
San Francisco, CA
.
36.
Augusto
,
O. B.
,
Bennis
,
F.
, and
Caro
,
S.
,
2012
, “
A New Method for Decision Making in Multi-Objective Optimization Problems
,”
Pesqui. Operacional
,
32
(
2
), pp.
331
369
.10.1590/S0101-74382012005000014
37.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.10.1007/s00158-003-0368-6
38.
Furdella
,
K. J.
,
Higuchi
,
S.
,
Behrangzade
,
A.
,
Kim
,
K.
,
Wagner
,
W. R.
, and
Vande Geest
,
J. P.
,
2021
, “
In-Vivo Assessment of a Tissue Engineered Vascular Graft Computationally Optimized for Target Vessel Compliance
,”
Acta Biomater.
,
123
, pp.
298
311
.10.1016/j.actbio.2020.12.058
39.
Shi
,
Z. D.
,
Ji
,
X. Y.
,
Qazi
,
H.
, and
Tarbell
,
J. M.
,
2009
, “
Interstitial Flow Promotes Vascular Fibroblast, Myofibroblast, and Smooth Muscle Cell Motility in 3-d Collagen i Via Upregulation of Mmp-1
,”
Am. J. Physiol. Heart Circ. Physiol.
,
297
(
4
), pp.
H1225
H1234
.10.1152/ajpheart.00369.2009
40.
Lever
,
M.
,
Tarbell
,
J. M.
, and
Caro
,
C. G.
,
1992
, “
The Effect of Luminal Flow in Rabbit Carotid Artery on Transmural Fluid Transport
,”
Exp. Physiol.
,
77
(
4
), pp.
553
563
.10.1113/expphysiol.1992.sp003619
41.
Soldani
,
G.
,
Losi
,
P.
,
Bernabei
,
M.
,
Burchielli
,
S.
,
Chiappino
,
D.
,
Kull
,
S.
,
Briganti
,
E.
, and
Spiller
,
D.
,
2010
, “
Long Term Performance of Small-Diameter Vascular Grafts Made of a Poly(Ether)Urethane-Polydimethylsiloxane Semi-Interpenetrating Polymeric Network
,”
Biomaterials
,
31
(
9
), pp.
2592
2605
.10.1016/j.biomaterials.2009.12.017
42.
Losi
,
P.
,
Lombardi
,
S.
,
Briganti
,
E.
, and
Soldani
,
G.
,
2004
, “
Luminal Surface Microgeometry Affects Platelet Adhesion in Small-Diameter Synthetic Grafts
,”
Biomaterials
,
25
(
18
), pp.
4447
4455
.10.1016/j.biomaterials.2003.11.025
43.
Bukac
,
M.
,
Yotov
,
I.
,
Zakerzadeh
,
R.
, and
Zunino
,
P.
,
2015
,
Effects of Poroelasticity on Fluid-Structure Interaction in Arteries: A Computational Sensitivity Study
,
Springer International Publishing
,
Cham
, pp.
197
220
.
44.
Zakerzadeh
,
R.
, and
Zunino
,
P.
,
2014
, “
Fluid-Structure Interaction in Arteries With a Poroelastic Wall Model
,” 21th Iranian Conference on Biomedical Engineering (
ICBME
), Tehran, Iran, Nov. 26–28, pp. 35–39.10.1109/ICBME.2014.7043889
You do not currently have access to this content.