Abstract

The calculation of tensile mechanical properties from stress–strain curves is a fundamental step in characterizing material behavior, yet no standardized method exists to perform these calculations for soft tissue. To address this deficiency, we developed a free web application called Dots-on-Plots2 that fully automates the calculation of tensile mechanical properties from stress–strain curves. The analyzed mechanical properties include the strength, strain, and energy at four points of interest (transition, yield, ultimate, and rupture), and the linear modulus. Users of Dots-on-Plots can upload multiple files, view and download results, and adjust threshold settings. This study determined a threshold setting that minimized error when calculating the transition point, where the stress–strain curve “transitions” from a nonlinear “toe” region to a linear region. Using the optimal threshold (2% stress deviation from a linear region fit), Dots-on-Plots calculated the transition strains from twenty tensile experiments of human meniscus to be 0.049 ± 0.007, which nearly matched the known transition strain values of 0.050 ± 0.006 (determined using finite element parameter optimization). The sensitivity of the calculated transition strain to the shape of various stress–strain curves was analyzed using sets of model-generated synthetic data. This free web application offers a convenient and reliable tool to systematically enhance the speed, transparency, and consistency of mechanical analysis across biomedical research groups.

References

1.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
,
2002
, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
72
77
.10.1115/1.1427698
2.
Tissakht
,
M.
, and
Ahmed
,
A. M.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.10.1016/0021-9290(94)00081-E
3.
Peloquin
,
J. M.
,
Santare
,
M. H.
, and
Elliott
,
D. M.
,
2016
, “
Advances in Quantification of Meniscus Tensile Mechanics Including Nonlinearity, Yield, and Failure
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021002
.10.1115/1.4032354
4.
ASTM
,
1997
, “
American Society for Testing and Materials. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials (D3039/D 3039M)
,”
ASTM
, pp.
105
116
.10.1520/D3039_D3039M-08
5.
ASTM
,
2003
, “
American Society for Testing and Materials. Standard Test Method for Tensile Properties of Plastics (D 638 - 02a)
,”
ASTM
,
08
, pp.
46
58
.10.1520/D0638-02
6.
Illinois Tool Works Inc.
,
2021
, “
Materials Testing Software
,” Instron.com, Online, accessed Aug. 19, 2022, https://www.instron.com/en-us/products/materials-testing-software/bluehill-fracture
7.
AMETEK
,
2021
, “
ForceTest Force Measuring Software
,” AMETEK, Online, accessed Aug. 19, 2022, https://www.ametektest.com/products/software/nexygenplus-materials-testing-software
8.
Viidik
,
A.
,
Danielsen
,
C. C.
, and
Oxlund
,
H.
,
1982
, “
On Fundemental and Phenomenological Models, Structure and Mechanical Properties of Collagen, Elastin and Glycosaminoglycan Complexes
,”
Biorheology
,
19
(
3
), pp.
437
451
.10.3233/BIR-1982-19305
9.
Zitnay
,
J. L.
,
Li
,
Y.
,
Qin
,
Z.
,
San
,
B. H.
,
Depalle
,
B.
,
Reese
,
S. P.
,
Buehler
,
M. J.
,
Yu
,
S. M.
, and
Weiss
,
J. A.
,
2017
, “
Molecular Level Detection and Localization of Mechanical Damage in Collagen Enabled by Collagen Hybridizing Peptides
,”
Nat. Commun.
,
8
(
1
), pp.
1
12
.10.1038/ncomms14913
10.
Wale
,
M. E.
,
Nesbitt
,
D. Q.
,
Henderson
,
B. S.
,
Fitzpatrick
,
C. K.
,
Creechley
,
J. J.
, and
Lujan
,
T. J.
,
2020
, “
Applying ASTM Standards to Tensile Tests of Musculoskeletal Soft Tissue: Methods to Reduce Grip Failures and Promote Reproducibility
,”
ASME J. Biomech. Eng.
,
143
(
1
), p.
011011
.10.1115/1.4048646
11.
Nesbitt
,
D. Q.
,
Siegel
,
D. N.
,
Nelson
,
S. J.
, and
Lujan
,
T. J.
,
2021
, “
Effect of Age on the Failure Properties of Human Meniscus: High-Speed Strain Mapping of Tissue Tears
,”
J. Biomech.
,
115
, p.
110126
.10.1016/j.jbiomech.2020.110126
12.
Abdelgaied
,
A.
,
Stanley
,
M.
,
Galfe
,
M.
,
Berry
,
H.
,
Ingham
,
E.
, and
Fisher
,
J.
,
2015
, “
Comparison of the Biomechanical Tensile and Compressive Properties of Decellularised and Natural Porcine Meniscus
,”
J. Biomech.
,
48
(
8
), pp.
1389
1396
.10.1016/j.jbiomech.2015.02.044
13.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2009
, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthopaedic Res.
,
27
(
12
), pp.
1596
1602
.10.1002/jor.20938
14.
Tanaka
,
M. L.
,
Weisenbach
,
C. A.
,
Carl Miller
,
M.
, and
Kuxhaus
,
L.
,
2011
, “
A Continuous Method to Compute Model Parameters for Soft Biological Materials
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
074502
.10.1115/1.4004412
15.
Ristaniemi
,
A.
,
Stenroth
,
L.
,
Mikkonen
,
S.
, and
Korhonen
,
R. K.
,
2018
, “
Comparison of Elastic, Viscoelastic and Failure Tensile Material Properties of Knee Ligaments and Patellar Tendon
,”
J. Biomech.
,
79
, pp.
31
38
.10.1016/j.jbiomech.2018.07.031
16.
Danso
,
E. K.
,
Honkanen
,
J. T. J.
,
Saarakkala
,
S.
, and
Korhonen
,
R. K.
,
2014
, “
Comparison of Nonlinear Mechanical Properties of Bovine Articular Cartilage and Meniscus
,”
J. Biomech.
,
47
(
1
), pp.
200
206
.10.1016/j.jbiomech.2013.09.015
17.
He
,
Y.
,
Chen
,
Y.
,
Wan
,
X.
,
Zhao
,
C.
,
Qiu
,
P.
,
Lin
,
X.
,
Zhang
,
J.
, and
Huang
,
Y.
,
2020
, “
Preparation and Characterization of an Optimized Meniscal Extracellular Matrix Scaffold for Meniscus Transplantation
,”
Front. Bioeng. Biotechnol.
,
8
, pp.
1
12
.10.3389/fbioe.2020.00779
18.
Abbasi
,
N. M.
,
2006
, “
On Stress Measures in Deformed Solids
,” accessed Apr. 11, 2022, pp.
1
45
, Online, https://www.12000.org/my_notes/stress_measures/index.htm#x1-60001.4
19.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
20.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
,
2002
, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
,
35
(
7
), pp.
943
950
.10.1016/S0021-9290(02)00041-6
21.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
22.
Satopää
,
V.
,
Albrecht
,
J.
,
Irwin
,
D.
, and
Raghavan
,
B.
,
2011
, “
Finding a ‘Kneedle' in a Haystack: Detecting Knee Points in System Behavior
,”
Proceedings - International Conference on Distributed Computing Systems
, Minneapolis, MN, June 20–24, pp.
166
171
.10.1109/ICDCSW.2011.20
23.
Everingham
,
J. B.
,
Martin
,
P. T.
, and
Lujan
,
T. J.
,
2019
, “
A Hand-Held Device to Apply Instrument-Assisted Soft Tissue Mobilization at Targeted Compression Forces and Stroke Frequencies
,”
ASME J. Med. Devices
,
13
(
1
), p. 014504.10.1115/1.4041696
24.
Andersson
,
J.-O.
,
Helander
,
T.
,
Höglund
,
L.
,
Shi
,
P.
, and
Sundman
,
B.
,
2002
, “
Thermo-Calc & DICTRA, Computational Tools for Materials Science
,”
Calphad
,
26
(
2
), pp.
273
312
.10.1016/S0364-5916(02)00037-8
25.
Saunders
,
N.
,
Guo
,
U. K. Z.
,
Li
,
X.
,
Miodownik
,
A. P.
, and
Schillé
,
J.-P.
,
2003
, “
Using JMatPro to Model Materials Properties and Behavior
,”
JOM
,
55
(
12
), pp.
60
65
.10.1007/s11837-003-0013-2
26.
Kahl
,
M.
,
Schneidereit
,
D.
,
Bock
,
N.
,
Friedrich
,
O.
,
Hutmacher
,
D. W.
, and
Meinert
,
C.
,
2021
, “
MechAnalyze: An Algorithm for Standardization and Automation of Compression Test Analysis
,”
Tissue Eng. Part C Methods
,
27
(
10
), pp.
529
542
.10.1089/ten.tec.2021.0170
27.
Lim
,
A.
,
Protsenko
,
D. E.
, and
Wong
,
B. J. F.
,
2011
, “
Changes in the Tangent Modulus of Rabbit Septal and Auricular Cartilage Following Electromechanical Reshaping
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
094502
.10.1115/1.4004916
28.
Lechner
,
K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2000
, “
Is the Circumferential Tensile Modulus Within a Human Medial Meniscus Affected by the Test Sample Location and Cross-Sectional Area?
,”
J. Orthopaedic Res.
,
18
(
6
), pp.
945
951
.10.1002/jor.1100180614
29.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2012
,
Materials Science and Engineering- An Introduction
, John Wiley & Sons, Inc., Hoboken, NJ, pp. 168–215.
30.
Unal
,
M.
, and
Akkus
,
O.
,
2015
, “
Raman Spectral Classification of Mineral- and Collagen-Bound Water's Associations to Elastic and Post-Yield Mechanical Properties of Cortical Bone
,”
Bone
,
81
, pp.
315
326
.10.1016/j.bone.2015.07.024
31.
Axpe
,
E.
,
Orive
,
G.
,
Franze
,
K.
, and
Appel
,
E. A.
,
2020
, “
Towards Brain-Tissue-Like Biomaterials
,”
Nat. Commun.
,
11
(
1
), pp.
1
4
.10.1038/s41467-020-17245-x
32.
Launey
,
M. E.
, and
Ritchie
,
R. O.
,
2009
, “
On the Fracture Toughness of Advanced Materials
,”
Adv. Mater.
,
21
(
20
), pp.
2103
2110
.10.1002/adma.200803322
33.
Rothermel
,
T. M.
,
Win
,
Z.
, and
Alford
,
P. W.
,
2020
, “
Large-Deformation Strain Energy Density Function for Vascular Smooth Muscle Cells
,”
J. Biomech.
,
111
p.
110005
.10.1016/j.jbiomech.2020.110005
34.
Nims
,
R.
,
Durney
,
K. M.
,
Cigan
,
A. D.
,
Dusséaux
,
A.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2016
, “
Continuum Theory of Fibrous Tissue Damage Mechanics Using Bond Kinetics: Application to Cartilage Tissue Engineering
,”
Interface Focus
,
6
(
1
), p.
20150063
.10.1098/rsfs.2015.0063
35.
Li
,
K.
,
Zhang
,
S. j.
,
Du
,
C. f.
,
Zhao
,
J. z.
,
Liu
,
Q.
,
Zhang
,
C. Q.
, and
Sun
,
Y. f.
,
2020
, “
Effect of Strain Rates on Failure of Mechanical Properties of Lumbar Intervertebral Disc Under Flexion
,”
Orthop. Surg.
,
12
(
6
), pp.
1980
1989
.10.1111/os.12847
36.
Zhang
,
G.
,
Luo
,
J.
,
Zheng
,
G.
,
Bai
,
Z.
,
Cao
,
L.
, and
Mao
,
H.
,
2021
, “
Is the 0.2%-Strain-Offset Approach Appropriate for Calculating the Yield Stress of Cortical Bone?
,”
Ann. Biomed. Eng.
,
49
(
7
), pp.
1747
1760
.10.1007/s10439-020-02719-2
37.
Nelson
,
S. J.
,
Creechley
,
J. J.
,
Wale
,
M. E.
, and
Lujan
,
T. J.
,
2020
, “
Print-A-Punch: A 3D Printed Device to Cut Dumbbell-Shaped Specimens From Soft Tissue for Tensile Testing
,”
J. Biomech
,
112
, p.
110011
.10.1016/j.jbiomech.2020.110011
You do not currently have access to this content.