Abstract

The transport of liquids, gasses, and aggressive agents into concrete is responsible for a variety of durability issues. To obtain the low-permeability concrete required for long-lasting, sustainable infrastructure, stakeholders desire the ability to specify concrete based upon the permeability rating for specific uses. The mechanisms of moisture ingress into concrete are complex phenomena, and they are highly dependent on materials, mixture characteristics, curing conditions, and other factors. This review article provides an overview of the available permeability test methods and identifies existing gaps in the current field and knowledge. It discusses the mechanisms and key factors influencing moisture movement within concrete (capillary suction, absorption, water, and gas permeability) and outlines the procedures, advantages, and limitations of available permeability test methods. Despite a variety of tests available for water permeability, widespread acceptance for use of a single (or even a few) tests has not been achieved. No clear link exists between these tests and acceptable field performance. Additionally, several tests are viewed as problematic from a time, cost, or variability standpoint. Therefore, improved rapid permeability tests are needed to provide a pathway for agencies to move toward performance specifications with confidence. Recommendations regarding future work to support the development of improved test methods and, potentially, a model that would predict moisture ingress based on electrical resistivity, are also presented.

References

1.
Mehta
P. K.
and
Monteiro
P. J. M.
,
Concrete: Microstructure, Properties, and Materials
, 4th ed. (
New York
:
McGraw-Hill
,
2014
).
2.
Basheer
L.
,
Kropp
J.
, and
Cleland
D. J.
, “
Assessment of the Durability of Concrete from Its Permeation Properties: A Review
,”
Construction and Building Materials
15
, nos. 
2–3
(
2001
):
93
103
, https://doi.org/10.1016/S0950-0618(00)00058-1
3.
Soutsos
M.
,
Concrete Durability: A Practical Guide to the Design of Durable Concrete Structures
(
London, UK
:
Thomas Telford
,
2010
).
4.
Castro
J.
,
Spragg
R.
,
Kompare
P.
, and
Weiss
W. J.
,
Portland Cement Concrete Pavement Permeability Performance, FHWA/IN/JTRP-2010/29
(
West Lafayette, IN
:
Purdue University; Indianapolis, IN: Indiana Department of Transportation
,
2010
), https://doi.org/10.5703/1288284314244
5.
Weiss
W. J.
,
Barrett
T. J.
,
Qiao
C.
, and
Todak
H.
, “
Toward a Specification for Transport Properties of Concrete Based on the Formation Factor of a Sealed Specimen
,”
Advances in Civil Engineering Materials
5
, no. 
1
(
2016
):
179
194
, https://doi.org/10.1520/ACEM20160004
6.
Stanish
K. D.
,
Hooton
R. D.
, and
Thomas
M. D. A.
,
Testing the Chloride Penetration Resistance of Concrete : A Literature Review, FHWA Contract DTFH61-97-R-00022
(
Toronto, ON
:
University of Toronto; McLean, VA: Federal Highway Administration
,
1997
).
7.
Farnam
Y.
,
Dick
S.
,
Wiese
A.
,
Davis
J.
,
Bentz
D.
, and
Weiss
J.
, “
The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials
,”
Cement and Concrete Composites
64
(November
2015
):
1
15
, https://doi.org/10.1016/j.cemconcomp.2015.09.006
8.
Weiss
J.
, “
Relating Transport Properties to Performance in Concrete Pavements
,”
CP Road Map
(
Ames, IA
:
Iowa State University
, December
2014
).
9.
Samson
E.
,
Marchand
J.
, and
Snyder
K. A.
, “
Calculation of Ionic Diffusion Coefficients on the Basis of Migration Test Results
,”
Materials and Structures
36
, no. 
3
(
2003
):
156
165
, https://doi.org/10.1007/BF02479554
10.
Marchand
J.
,
Odler
I.
, and
Skalny
J. P.
,
Sulfate Attack on Concrete
(
London, UK
:
CRC Press
,
2002
).
11.
Taylor
H. F. W.
,
Cement Chemistry
(
London, UK
:
Thomas Telford
,
1997
).
12.
Safiuddin
M.
and
Hearn
N.
, “
Comparison of ASTM Saturation Techniques for Measuring the Permeable Porosity of Concrete
,”
Cement and Concrete Research
35
, no. 
5
(
2005
):
1008
1013
, https://doi.org/10.1016/j.cemconres.2004.09.017
13.
ACI Committee 201
ACI 201.2R-16 Guide to Durable Concrete
(Farmington Hills, MI:
American Concrete Institute
,
2016
).
14.
Pettersson
K.
,
Olika faktorers inverkan på kloriddiffusion i betongkonstruktioner [The Effect of Different Factors on the Chloride Diffusion in Concrete], CBI Rapport 4:94
(Stockholm, Sweden:
Cement och Betong Institutet
,
1994
).
15.
Bu
Y.
,
Luo
D.
, and
Weiss
J.
, “
Using Fick’s Second Law and Nernst–Planck Approach in Prediction of Chloride Ingress in Concrete Materials
,”
Advances in Civil Engineering Materials
3
, no. 
1
(
2014
):
566
585
, https://doi.org/10.1520/ACEM20140018
16.
Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration, AASHTO T 259
(Washington, DC:
American Association of State Highway and Transportation Officials
,
2017
).
17.
Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion
, ASTM C1556–11a (
2016
) (West Conshohocken, PA:
ASTM International, approved December 15, 2016
), https://doi.org/10.1520/C1556-11AR16
18.
Concrete, Hardened: Accelerated Chloride Penetration
, NT Build 443 (Espoo, Finland:
Nordtest
,
1995
).
19.
Nokken
M.
,
Boddy
A.
,
Hooton
R. D.
, and
Thomas
M. D. A.
, “
Time Dependent Diffusion in Concrete—Three Laboratory Studies
,”
Cement and Concrete Research
36
, no. 
1
(
2006
):
200
207
, https://doi.org/10.1016/j.cemconres.2004.03.030
20.
Martín-Pérez
B.
,
Zibara
H.
,
Hooton
R. D.
, and
Thomas
M. D. A.
, “
A Study of the Effect of Chloride Binding on Service Life Predictions
,”
Cement and Concrete Research
30
, no. 
8
(
2000
):
1215
1223
, https://doi.org/10.1016/S0008-8846(00) 00339-2
21.
Tumidajski
P. J.
, “
Application of Danckwerts’ Solution to Simultaneous Diffusion and Chemical Reaction in Concrete
,”
Cement and Concrete Research
26
, no. 
5
(
1996
):
697
700
, https://doi.org/10.1016/S0008-8846(96)85006-X
22.
Glass
G. K.
and
Buenfeld
N. R.
, “
Theoretical Assessment of the Steady State Diffusion Cell Test
,”
Journal of Materials Science
33
, no. 
21
(
1998
):
5111
5118
, https://doi.org/10.1023/A:1004407214997
23.
Marchand
J.
,
Gerard
B.
, and
Delagrave
A.
, “
Ion Transport Mechanisms in Cement-Based Materials
,” in
Materials Science of Concrete
, ed.
Skalny
J. P.
and
Mindess
S.
(
Westerville, OH
:
American Ceramic Society
1998
),
307
400
.
24.
Nilsson
L.-O.
,
Poulsen
E.
,
Sandberg
P.
,
Sørensen
H. E.
, and
Klinghoffer
O.
,
HETEK, Chloride Penetration into Concrete, State-of-the-Art, Transport Processes, Corrosion Initiation, Test Methods and Prediction Models
(Copenhagen, Denmark:
Danish Road Directorate
,
1996
).
25.
Andrade
C.
, “
Calculation of Chloride Diffusion Coefficients in Concrete from Ionic Migration Measurements
,”
Cement and Concrete Research
23
, no. 
3
(
1993
):
724
742
, https://doi.org/10.1016/0008-8846(93)90023-3
26.
McGrath
P. F.
and
Hooton
R. D.
, “
Influence of Voltage on Chloride Diffusion Coefficients from Chloride Migration Tests
,”
Cement and Concrete Research
26
, no. 
8
(
1996
):
1239
1244
, https://doi.org/10.1016/0008-8846(96)00094-4
27.
Samson
E.
,
Marchand
J.
, and
Beaudoin
J. J.
, “
Describing Ion Diffusion Mechanisms in Cement-Based Materials Using the Homogenization Technique
,”
Cement and Concrete Research
29
, no. 
8
(
1999
):
1341
1345
, https://doi.org/10.1016/S0008-8846(99)00101-5
28.
Truc
O.
,
Ollivier
J.-P.
, and
Nilsson
L.-O.
, “
Numerical Simulation of Multi-Species Transport through Saturated Concrete during a Migration Test – MsDiff Code
,”
Cement and Concrete Research
30
, no. 
10
(
2000
):
1581
1592
, https://doi.org/10.1016/S0008-8846(00)00305-7
29.
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
, ASTM C1202-19 (
West Conshohocken, PA
:
ASTM International
, approved February 1,
2019
), https://doi.org/10.1520/C1202-19
30.
Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments
, NT Build 492 (Espoo, Finland:
Nordtest
,
1999
).
31.
Concrete, Mortar and Cement-Based Repair Materials: Chloride Diffusion Coefficient from Migration Cell Experiments
, NT Build 355 (Espoo, Finland:
Nordtest
,
1997
).
32.
Test Method for Effective Diffusion Coefficient of Chloride Ion in Concrete by Migration
, JSCE-G571-2003 (Tokyo, Japan:
Japan Society of Civil Engineers
,
2003
).
33.
Lu
X.
, “
Application of the Nernst-Einstein Equation to Concrete
,”
Cement and Concrete Research
27
, no. 
2
(
1997
):
293
302
, https://doi.org/10.1016/S0008-8846(96)00200-1
34.
Nadelman
E. I.
and
Kurtis
K. E. A.
, “
A Resistivity-Based Approach to Optimizing Concrete Performance
,”
Concrete International
36
, no. 
5
(
2014
):
50
54
.
35.
Elkey
W.
and
Sellevold
E. J.
,
Electrical Resistivity of Concrete
(
Oslo, Norway
:
Directorate of Public Roads-Norwegian Road Research Laboratory
,
1995
), http://web.archive.org/web/20210323140814/https://vegvesen.brage.unit.no/vegvesen-xmlui/bitstream/handle/11250/191626/Publication%20%2080.pdf?sequence=1
36.
Beushausen
H.
and
Fernandez Luco
L.
,
Performance-Based Specifications and Control of Concrete Durability: State-of-the-Art Report RILEM TC 230-PSC
(
Dordrecht, the Netherlands
:
Springer Netherlands
,
2016
).
37.
Layssi
H.
,
Ghods
P.
,
Alizadeh
A. R.
, and
Salehi
M.
, “
Electrical Resistivity of Concrete
,”
Concrete International
37
, no. 
5
(
2015
):
41
46
.
38.
Sengul
O.
and
Gjorv
O. E.
, “
Electrical Resistivity Measurements for Quality Control during Concrete Construction
,”
ACI Material Journal
105
, no. 
6
(
2008
):
541
547
.
39.
Andrade
C.
and
d’Andrea
R.
, “
Electrical Resistivity as Microstructural Parameter for the Modelling of Service Life of Reinforced Concrete Structures
,” in
Second International Symposium on Service Life Design for Infrastructures
, ed.
van
K.
,
Breugel
G.
, and
Ye
Y.
Yuan (
Paris, France
:
RILEM
,
2010
),
379
388
.
40.
Andrade
C.
,
d’Andrea
R.
, and
Rebolledo
N.
, “
Chloride Ion Penetration in Concrete: The Reaction Factor in the Electrical Resistivity Model
,”
Cement and Concrete Composites
47
(March
2014
):
41
46
, https://doi.org/10.1016/j.cemconcomp.2013.09.022
41.
Li
W.
,
Sun
W.
, and
Jiang
J.
, “
Damage of Concrete Experiencing Flexural Fatigue Load and Closed Freeze/Thaw Cycles Simultaneously
,”
Construction and Building Materials
25
, no. 
5
(
2011
):
2604
2610
, https://doi.org/10.1016/j.conbuildmat.2010.12.007
42.
Fagerlund
G.
,
A Service Life Model for Internal Frost Damage in Concrete, Report TVBM
, Vol. 
3119
(
Lund, Sweden
:
Division of Building Materials, LTH, Lund University
,
2004
).
43.
Barde
V.
,
Radlinska
A.
,
Cohen
M.
, and
Weiss
W. J.
,
Relating Material Properties to Exposure Conditions for Predicting Service Life in Concrete Bridge Decks in Indiana, FHWA/IN/JTRP-2007/27
(
West Lafayette, IN
:
Purdue University; Indianapolis, IN: Indiana Department of Transportation
,
2009
), https://doi.org/10.5703/1288284313444
44.
Todak
H.
,
Lucero
C.
, and
Weiss
W. J.
, “
Why Is the Air There? Thinking about Freeze-Thaw in Terms of Saturation
,”
Concrete in Focus
(
Spring
2015
):
OC3
OC7
.
45.
Levitt
M.
, “
The ISAT: A Non-destructive Test for the Durability of Concrete
,”
British Journal of Non-destructive Testing
13
, no. 
4
(
1971
):
106
112
.
46.
Testing Concrete.
Recommendations for the Determination of the Initial Surface Absorption of Concrete
, BS 1881-208:1996 (
London, UK
:
British Standards Institution
,
1996
).
47.
Dhir
R. K.
,
Byars
E. A.
,
Chan
Y. N.
, and
Shabaan
I. G.
, “
ISAT Prediction of Concrete Durability
” in
Non-Destructive Testing in Civil Engineering
, ed.
Bungey
J. H.
(
Northampton, UK
:
British Institute of Non-Destructive Testing
,
1993
),
301
314
.
48.
Basheer
P. A. M.
, “
Permeation Analysis
,” in
Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques, and Applications
, ed.
Ramachandran
V. S.
and
Beaudoin
J. J.
(
Norwich, NY
:
William Andrew Publishing
,
2001
),
658
727
.
49.
Figg
J. W.
, “
Methods of Measuring the Air and Water Permeability of Concrete
,”
Magazine of Concrete Research
25
, no. 
85
(
1973
):
213
219
, https://doi.org/10.1680/macr.1973.25.85.213
50.
James Instruments
C-P-6000, C-P-6050 Porosiscope: Operator’s Manual
(Chicago, IL:
James Instruments
,
2018
).
51.
Figg
J.
, “
Concrete Permeability: Measurement and Meaning
,”
Chemistry and Industry
, no. 21 (
1989
):
714
719
.
52.
Cavalline
T.
,
Kitts
A.
, and
Calamusa
J.
,
Durability of Lightweight Concrete Bridge Decks – Field Evaluation
, FHWA/NC/2011-06 (
Charlotte, NC
:
University of North Carolina at Charlotte; Raleigh, NC: North Carolina Department of Transportation
,
2013
).
53.
Patel
V. N.
, “
Sorptivity Testing to Assess Durability of Concrete against Freeze-Thaw Cycling
” (
PhD diss., McGill University
,
2009
).
54.
RILEM TC 116-PCD “
TC 116-PCD: Permeability of Concrete as a Criterion of Its Durability
,”
Materials and Structures
32
, no. 
217
(
1999
):
163
173
.
55.
Bentz
D. P.
,
Ehlen
M. A.
,
Ferraris
C. F.
, and
Winpigler
J. A.
,
Service Life Prediction Based on Sorptivity for Highway Concrete Exposed to Sulfate Attack and Freeze-Thaw Conditions, FHWA-RD-01-162
(
Gaithersburg, MD
:
National Institute of Standards and Technology; McLean, VA: Federal Highway Administration
,
2002
).
56.
Hall
C.
, “
Water Sorptivity of Mortars and Concretes: A Review
,”
Magazine of Concrete Research
41
, no. 
147
(
1989
):
51
61
. https://doi.org/10.1680/macr.1989.41.147.51
57.
Ballim
Y.
and
Alexander
M.
, “
Guiding Principles in Developing the South African Approach to Durability Index Testing of Concrete
,” in
Sixth International Conference on Durability of Concrete Structures
, ed.
Basheer
P. A. M.
(
Dunbeath, UK
:
Whittles Publishing
,
2018
),
36
45
.
58.
Dhanya
B. S.
,
Santhanam
M.
,
Gettu
R.
, and
Pillai
R. G.
, “
Performance Evaluation of Concretes Having Different Supplementary Cementitious Material Dosages Belonging to Different Strength Ranges
,”
Construction and Building Materials
187
(October
2018
):
984
995
, https://doi.org/10.1016/j.conbuildmat.2018.07.185
59.
Alexander
M. G.
,
Ballim
Y.
, and
Stanish
K.
, “
A Framework for Use of Durability Indexes in Performance-Based Design and Specifications for Reinforced Concrete Structures
,”
Materials and Structures
41
, no. 
5
(
2008
):
921
936
, https://doi.org/10.1617/s11527-007-9295-0
60.
Standard Test Method for Density, Absorption, and Voids in Hardened Concrete
, ASTM C642-13 (West Conshohocken, PA:
ASTM International
, approved February 1,
2013
), https://doi.org/10.1520/C0642-13
61.
Fick
G.
,
Testing Guide for Implementing Concrete Paving Quality Control Procedures
(
Ames, IA
:
National Concrete Pavement Technology Center
;
Washington, DC
:
Federal Highway Administration
,
2008
).
62.
Bu
Y.
,
Spragg
R.
, and
Weiss
J.
, “
Comparison of the Pore Volume in Concrete as Determined Using ASTM C642 and Vacuum Saturation
,”
Advances in Civil Engineering Materials
3
, no. 
1
(
2014
):
308
315
, https://doi.org/10.1520/ACEM20130090
63.
Methods of Testing Concrete – Determination of Water Absorption and Apparent Volume of Permeable Voids in Hardened Concrete
, AS 1012.21-1999 (R2014) (Sydney, Australia:
Standards Australia
,
1999
).
64.
Performance Tests to Assess Concrete Durability
, CIA Z7/07 (North Sydney, Australia:
Concrete Institute of Australia
,
2015
).
65.
Andrews-Phaedonos
F.
, “
Assessment of Concrete Durability Using a Single Parameter with a High Level of Precision-The VPV Test
” (paper presentation,
25th ARRB Conference
,
Perth, Australia
, September 23–26,
2012
).
66.
Germann Instruments “
Germann Water Permeation Test
,”
Germann Instruments
, https://web.archive.org/web/20200512165733/http://germann.org/wp-content/uploads/2016/06/GWT.pdf
67.
Basheer
P. A. M.
, “
A Brief Review of Methods for Measuring the Permeation Properties of Concrete In Situ
,”
Proceedings of the Institution of Civil Engineers – Structures and Buildings
99
, no. 
1
(
1993
):
74
83
, https://doi.org/10.1680/istbu.1993.22515
69.
Testing Hardened Concrete.
Depth of Penetration of Water under Pressure
, BS EN 12390-8:2019 (London, UK:
British Standards Institution
,
2019
).
70.
Testing Concrete; Testing of Hardened Concrete (Specimens Prepared in Mould)
, DIN 1048-5 (Berlin, Germany:
German National Standard
,
1991
).
71.
Meletiou
C. A.
,
Tia
M.
, and
Bloomquist
D.
, “
Development of a Field Permeability Test Apparatus and Method for Concrete
,”
ACI Materials Journal
89
, no. 
1
(
1993
):
83
89
.
72.
McGrath
P. F.
and
Hooton
R. D.
, “
Re-evaluation of the AASHTO T259 90-Day Salt Ponding Test
,”
Cement and Concrete Research
29
, no. 
8
(
1999
):
1239
1248
, https://doi.org/10.1016/S0008-8846(99)00058-7
73.
Sherman
M. R.
,
McDonald
D. B.
, and
Pfeifer
D. W.
, “
Durability Aspects of Precast Prestressed Concrete Part 2: Chloride Permeability Study
,”
PCI Journal
41
, no. 
4
(July–August
1996
):
76
95
, https://doi.org/10.15554/pcij.07011996.76.95
74.
Ngala
V. T.
and
Page
C. L.
, “
Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Cement Pastes
,”
Cement and Concrete Research
27
, no. 
7
(
1997
):
995
1007
, https://doi.org/10.1016/S0008-8846(97)00102-6
75.
Whiting
D.
, “
Rapid Measurement of the Chloride Permeability of Concrete
,”
Public Roads
45
, no. 
3
(
1981
):
101
112
.
76.
Ozyildirim
C.
, “
Rapid Chloride Permeability Testing of Silica-Fume Concrete
,”
Cement, Concrete and Aggregates
16
, no. 
1
(
1994
):
53
56
, https://doi.org/10.1520/CCA10562J
77.
Malek
R. I. A.
and
Roy
D. M.
, “
The Permeability of Chloride Ions in Fly Ash-Cement Pastes, Mortars and Concrete
,”
MRS Proceedings
113
(
1987
): 291, https://doi.org/10.1557/PROC-113-291
78.
Geiker
M.
,
Thaulow
N.
, and
Anderson
P. J.
, “
Assessment of Rapid Chloride Permeability Test of Concrete with and without Mineral Admixtures
,” in
Durability of Building Materials and Components: Proceedings of the Fifth International Conference
, ed.
Baker
J. M.
,
Nixon
P. J.
,
Majumdar
A. J.
, and
Davis
H.
(
London, UK
:
E. & F. N. Spon
,
1990
),
493
502
.
79.
Buenfeld
N. R.
and
Newman
J. B.
, “
Examination of Three Methods for Studying Ion Diffusion in Cement Pastes, Mortars and Concrete
,”
Materials and Structures
20
, no. 
1
(
1987
): 3, https://doi.org/10.1007/BF02472720
80.
Detwiler
R. J.
and
Fapohunda
C. A.
, “
A Comparison of Two Methods for Measuring the Chloride Ion Permeability of Concrete
,”
Cement, Concrete and Aggregates
15
, no. 
1
(
1993
):
70
73
, https://doi.org/10.1520/CCA10589J
81.
Hooton
R. D.
, “
What Is Needed in a Permeability Test for Evaluation of Concrete Quality
,”
MRS Proceedings
137
(
1988
): 141, https://doi.org/10.1557/PROC-137-141
82.
Bognacki
C. J.
,
Pirozzi
M.
,
Baumann
W. C.
, and
Marsano
J.
, “
Rapid Chloride Permeability Testing
,”
Concrete International
32
, no. 
5
(
2010
):
47
52
.
83.
van Noort
R.
,
Hunger
M.
, and
Spiesz
P.
, “
Long-Term Chloride Migration Coefficient in Slag Cement-Based Concrete and Resistivity as an Alternative Test Method
,”
Construction and Building Materials
115
(July
2016
):
746
759
, https://doi.org/10.1016/j.conbuildmat.2016.04.054
84.
Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration (Inactive)
, AASHTO T 358 (Washington, DC:
American Association of State Highway and Transportation Officials
,
2017
).
86.
Icenogle
P. J.
and
Rupnow
T. D.
, “
Development of Precision Statement for Concrete Surface Resistivity
,”
Transportation Research Record
2290
, no. 
1
(
2012
):
38
43
, https://doi.org/10.3141/2290-05
87.
Morris
W.
,
Moreno
E. I.
, and
Sagüés
A. A.
, “
Practical Evaluation of Resistivity of Concrete in Test Cylinders Using a Wenner Array Probe
,”
Cement and Concrete Research
26
, no. 
12
(
1996
):
1779
1787
, https://doi.org/10.1016/S0008-8846(96)00175-5
88.
Kessler
R. J.
,
Powers
R. G.
,
Vivas
E.
,
Paredes
M. A.
, and
Virmani
Y. P.
, “
Surface Resistivity as an Indicator of Concrete Chloride Penetration Resistance
,” in
2008 Concrete Bridge Conference
(
Washington, DC
:
Federal Highway Administration
,
2008
), CD-ROM.
89.
Rupnow
T. D.
and
Icenogle
P. J.
, “
Surface Resistivity Measurements Evaluated as Alternative to Rapid Chloride Permeability Test for Quality Assurance and Acceptance
,”
Transportation Research Record
2290
, no. 
1
(
2012
):
30
37
, https://doi.org/10.3141/2290-04
90.
Kevern
J. T.
,
Halmen
C.
,
Hudson
D. P.
, and
Trautman
B.
, “
Evaluation of Surface Resistivity for Concrete Quality Assurance in Missouri
,”
Transportation Research Record
2577
, no. 
1
(
2016
):
53
59
, https://doi.org/10.3141/2577-07
91.
Jenkins
A.
,
Surface Resistivity as an Alternative for Rapid Chloride Permeability Test of Hardened Concrete, FHWA-KS-14-15
(
Topeka, KS
:
Kansas Department of Transportation
,
2015
).
92.
Spragg
R. P.
,
Castro
J.
,
Nantung
T.
,
Paredes
M.
, and
Weiss
J.
, “
Variability Analysis of the Bulk Resistivity Measured Using Concrete Cylinders
,”
Advances in Civil Engineering Materials
1
, no. 
1
(
2012
):
1
17
, https://doi.org/10.1520/ACEM104596
93.
Rupnow
T. D.
and
Icenogle
P. J.
, “
Investigation of Factors Affecting PCC Surface Resistivity through Ruggedness Testing
,”
Journal of Testing Evaluation
42
, no. 
2
(
2014
):
467
474
, https://doi.org/10.1520/JTE20130154
94.
Florida Method of Test for Concrete Resistivity as an Electrical Indicator of Its Permeability
, FM 5-578 (Tallahassee, FL:
Florida Department of Transportation
, approved January 1,
2004
).
95.
Standard Test Method for Bulk Electrical Conductivity of Hardened Concrete
(Withdrawn), ASTM C1760-12 (West Conshohocken, PA:
ASTM International
, approved January 1,
2012
), https://doi.org/10.1520/C1760-12
97.
Berke
N. S.
,
Aldykiewicz
A. J.
,
Hoopes
R. J.
, and
Li
F.
, “
Long-Term Behavior of Fly Ash and Silica Fume Concretes in Laboratory and Field Exposures to Chlorides
” (paper presentation,
NACE Corrosion Conference 2005
,
Houston, TX
, April 3–7,
2005
), Paper No. NACE-05253.
98.
Baroghel-Bouny
V.
,
Kinomura
K.
,
Thiery
M.
, and
Moscardelli
S.
, “
Easy Assessment of Durability Indicators for Service Life Prediction or Quality Control of Concretes with High Volumes of Supplementary Cementitious Materials
,”
Cement and Concrete Composites
33
, no. 
8
(
2011
):
832
847
, https://doi.org/10.1016/j.cemconcomp.2011.04.007
99.
Ghosh
P.
and
Tran
Q.
, “
Correlation between Bulk and Surface Resistivity of Concrete
,”
International Journal of Concrete Structures and Materials
9
, no. 
1
(
2015
):
119
132
, https://doi.org/10.1007/s40069-014-0094-z
100.
Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures
(Superseded), AASHTO PP 84-18 (Washington, DC:
American Association of State Highway and Transportation Officials
,
2018
).
101.
Weiss
W. J.
,
Spragg
R. P.
,
Isgor
O. B.
,
Ley
M. T.
, and
Van
T.
Dam, “
Toward Performance Specifications for Concrete: Linking Resistivity, RCPT, and Diffusion Predictions Using the Formation Factor for Use in Specifications
,” in
High Tech Concrete: Where Technology and Engineering Meet
, ed.
Hordijk
D.
and
Luković
M.
(
Cham, Switzerland
:
Springer
,
2018
),
2057
2065
.
102.
Azad
V. J.
,
Erbektas
A. R.
,
Qiao
C.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Relating the Formation Factor and Chloride Binding Parameters to the Apparent Chloride Diffusion Coefficient of Concrete
,”
Journal of Materials in Civil Engineering
31
, no. 
2
(
2019
): 04018392, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002615
103.
Tsui-Chang
M.
,
Suraneni
P.
,
Montanari
L.
,
Muñoz
J. F.
, and
Weiss
W. J.
, “
Determination of Chemical Composition and Electrical Resistivity of Expressed Cementitious Pore Solutions Using X-Ray Fluorescence
,”
ACI Materials Journal
116
, no. 
1
(
2019
):
155
164
, https://doi.org/10.14359/51712242
104.
Tanesi
J.
,
Montanari
L.
, and
Ardani
A.
,
Formation Factor Demystified and Its Relationship to Durability
(
Washington, DC
:
Federal Highway Administration
,
2019
).
105.
Plusquellec
G.
,
Geiker
M. R.
,
Lindgård
J.
,
Duchesne
J.
,
Fournier
B.
, and
De
K.
Weerdt, “
Determination of the pH and the Free Alkali Metal Content in the Pore Solution of Concrete: Review and Experimental Comparison
,”
Cement and Concrete Research
96
(June
2017
):
13
26
, https://doi.org/10.1016/j.cemconres.2017.03.002
106.
Behnood
A.
,
Van Tittelboom
K.
, and
De
N.
Belie, “
Methods for Measuring pH in Concrete: A Review
,”
Construction and Building Materials
105
(February
2016
):
176
188
, https://doi.org/10.1016/j.conbuildmat.2015.12.032
107.
Bentz
D. P.
, “
A Virtual Rapid Chloride Permeability Test
,”
Cement and Concrete Composites
29
, no. 
10
(
2007
):
723
731
, https://doi.org/10.1016/j.cemconcomp.2007.06.006
108.
Spragg
R.
,
Villani
C.
, and
Weiss
J.
, “
Electrical Properties of Cementitious Systems: Formation Factor Determination and the Influence of Conditioning Procedures
,”
Advances in Civil Engineering Materials
5
, no. 
1
(
2016
):
124
148
, https://doi.org/10.1520/ACEM20150035
109.
Coyle
A. T.
,
Spragg
R. P.
,
Suraneni
P.
,
Amirkhanian
A. N.
, and
Weiss
W. J.
, “
Comparison of Linear Temperature Corrections and Activation Energy Temperature Corrections for Electrical Resistivity Measurements of Concrete
,”
Advances in Civil Engineering Materials
7
, no. 
1
(
2018
): 174–187, https://doi.org/10.1520/ACEM20170135
110.
Qiao
C.
,
Moradllo
M. K.
,
Hall
H.
,
Ley
M. T.
, and
Weiss
W. J.
, “
Electrical Resistivity and Formation Factor of Air-Entrained Concrete
,”
ACI Materials Journal
116
, no. 
3
(
2019
):
85
93
, https://doi.org/10.14359/51714506
111.
Moradllo
M. K.
,
Qiao
C.
,
Isgor
B.
,
Reese
S.
, and
Weiss
W. J.
, “
Relating Formation Factor of Concrete to Water Absorption
,”
ACI Materials Journal
115
, no. 
6
(
2018
):
887
898
, https://doi.org/10.14359/51706844
112.
Tibbetts
C. M.
,
Paris
J. M.
,
Ferraro
C. C.
,
Riding
K. A.
, and
Townsend
T. G.
, “
Relating Water Permeability to Electrical Resistivity and Chloride Penetrability of Concrete Containing Different Supplementary Cementitious Materials
,”
Cement and Concrete Composites
107
(March
2020
): 103491, https://doi.org/10.1016/j.cemconcomp.2019.103491
113.
Cavalline
T. L.
,
Tempest
B. Q.
,
Biggers
R. B.
,
Lukavsky
A. J.
,
McEntyre
M. S.
, and
Newsome
R. A.
,
Durable and Sustainable Concrete through Performance Engineered Concrete Mixtures, FHWA/NC/2018-14
(
Raleigh, NC
:
North Carolina Department of Transportation
,
2020
).
114.
Gudimettla
J.
and
Crawford
G.
, “
Resistivity Tests for Concrete—Recent Field Experience
,”
ACI Materials Journal
113
, no. 
4
(
2016
):
505
512
, https://doi.org/10.14359/51688830
115.
Ramezanianpour
A. A.
and
Jovein
H. B.
, “
Influence of Metakaolin as Supplementary Cementing Material on Strength and Durability of Concretes
,”
Construction and Building Materials
30
(May
2012
):
470
479
, https://doi.org/10.1016/j.conbuildmat.2011.12.050
116.
Ramezanianpour
A. A.
,
Pilvar
A.
,
Mahdikhani
M.
, and
Moodi
F.
, “
Practical Evaluation of Relationship between Concrete Resistivity, Water Penetration, Rapid Chloride Penetration and Compressive Strength
,”
Construction and Building Materials
25
, no. 
5
(
2011
):
2472
2479
, https://doi.org/10.1016/j.conbuildmat.2010.11.069
117.
Medlin
C. D.
, “
Durability of Pavement Concrete with Replacement of Cement by Flyash and Portland Limestone Cement
” (master’s thesis,
University of North Carolina at Charlotte
,
2016
).
118.
Tanesi
J.
and
Ardani
A.
,
Surface Resistivity Test Evaluation as an Indicator of the Chloride Permeability of Concrete, FHWA-HRT-13-024
(
Washington, DC
:
Federal Highway Administration
,
2012
).
119.
Chini
A. R.
,
Muszynski
L. C.
, and
Hicks
J. K.
,
Determination of Acceptance Permeability Characteristics for Performance-Related Specifications for Portland Cement Concrete, Report No. BC 354-41
(Gainesville, FL:
University of Florida
,
2003
).
This content is only available via PDF.
You do not currently have access to this content.