Abstract

In this experimental study, the workability and bleeding properties of cement-based grout mixes combined with fly ash (FA) and nano silica (n-SiO2) as colloidal nanopowder were investigated, and some prediction models were developed with the artificial neural network. The Marsh cone flow time, mini slump spreading diameter, and plate cohesion meter values of samples prepared in different concentrations have been measured and analyzed experimentally to investigate the workability properties. Moreover, bleeding tests were carried out on the grout mixtures prepared within the scope of this experimental study. Test results showed that the usage of FA as a mineral additive in the grout samples positively contributed to an increase on the fluidity of the grout samples as expected. Although the increase in n-SiO2 content in the grout mixes resulted in an increase in the Marsh cone flow time of the grout mixes, it resulted in a decrease in the mini slump spreading diameter of the samples. The increase in the plate cohesion values of the grout mixtures was also observed in the n-SiO2 added grout mixtures. At the same time, the bleeding values of the grout mixes with and without mineral additives of 0.9 % or more with n-SiO2 additives remained above 900 ml (below 10 % bleeding rate). The artificial neural network model can predict the workability properties of cement-based grouts containing n-SiO2 nanoparticle-doped FA with high accuracy.

References

1.
Peng
Y.
,
Ma
K.
,
Long
G.
, and
Xie
Y.
, “
Influence of Nano-SiO2, Nano-CaCO3 and Nano-Al2O3 on Rheological Properties of Cement–Fly Ash Paste
,”
Materials
12
, no. 
16
(August
2019
): 2598, https://doi.org/10.3390/ma12162598
2.
Rashad
A. M.
, “
A Synopsis about the Effect of Nano-Al2O3, Nano-Fe2O3, Nano-Fe3O4 and Nano-clay on Some Properties of Cementitious Materials - A Short Guide for Civil Engineer
,”
Material and Design
52
(December
2013
):
143
157
, https://doi.org/10.1016/j.matdes.2013.05.035
3.
Song
S. Q.
,
Jiang
L. H.
,
Jiang
S. B.
,
Yan
X. C.
, and
Xu
N.
, “
The Mechanical Properties and Electrochemical Behavior of Cement Paste Containing Nano-MgO at Different Curing Temperature
,”
Construction and Building Materials
164
(March
2018
):
663
671
, https://doi.org/10.1016/j.conbuildmat.2018.01.011
4.
Singh
L. P.
,
Bhattacharyya
S. K.
, and
Ahalawat
S.
, “
Preparation of Size Controlled Silica Nano Particles and Its Functional Role in Cementitious System
,”
Journal of Advanced Concrete Technology
10
, no. 
11
(November
2012
):
345
352
, https://doi.org/10.3151/jact.10.345
5.
Madani
H.
,
Bagheri
A.
, and
Parhizkar
T.
, “
The Pozzolanic Reactivity of Monodispersed Nanosilica Hydrosols and Their Influence on the Hydration Characteristics of Portland Cement
,”
Cement and Concrete Research
42
, no. 
12
(December
2012
):
1563
1570
, https://doi.org/10.1016/j.cemconres.2012.09.004
6.
Björnström
J.
,
Martinelli
A.
,
Matic
A.
,
Börjesson
L.
, and
Panas
I.
, “
Accelerating Effects of Colloidal Nano-silica for Beneficial Calcium-Silicate-Hydrate Formation in Cement
,”
Chemical Physics Letters
392
, nos.
1–3
(July
2004
):
242
248
, https://doi.org/10.1016/j.cplett.2004.05.071
7.
Ji
T.
, “
Preliminary Atudy on the Water Permeability and Microstructure of Concrete Incorporating Nano-SiO2
,”
Cement and Concrete Research
35
, no. 
10
(October
2005
):
1943
1947
, https://doi.org/10.1016/j.cemconres.2005.07.004
8.
Hou
P. K.
,
Kawashima
S.
,
Kong
D. Y.
,
Corr
D. J.
,
Qian
J. S.
, and
Shah
S. P.
, “
Modification Effects of Colloidal NanoSiO2 on Cement Hydration and Its Gel Property
,”
Composites Part B: Engineering
45
, no. 
1
(February
2013
):
440
448
, https://doi.org/10.1016/j.compositesb.2012.05.056
9.
Zabihi
N.
and
Ozkul
M. H.
, “
The Fresh Properties of Nano Silica Incorporating Polymer-Modified Cement Pastes
,”
Construction and Building Materials
168
(April
2018
):
570
579
, https://doi.org/10.1016/j.conbuildmat.2018.02.084
10.
Balapour
M.
,
Joshaghani
A.
, and
Althoey
F.
, “
Nano-SiO2 Contribution to Mechanical, Durability, Fresh and Microstructural Characteristics of Concrete: A Review
,”
Construction and Building Materials
181
(August
2018
):
27
41
, https://doi.org/10.1016/j.conbuildmat.2018.05.266
11.
Ouyang
J.
,
Han
B. G.
,
Chen
G. Z.
,
Zhao
L. Z.
, and
Ou
J. P.
, “
A Viscosity Prediction Model for Cement Paste with Nano-Sio2 Particles
,”
Construction and Building Materials
185
(October
2018
):
293
301
, https://doi.org/10.1016/j.conbuildmat.2018.07.070
12.
Collepardi
S.
,
Borsoi
A.
,
Olagot
J. J. O.
,
Troli
R.
,
Collepardi
M.
, and
Cursio
A. Q.
, “
Influence of Nano-sized Mineral Additions on Performance of SCC
,” in
Proceedings of the Sixth International Congress, Global Construction, Ultimate Concrete Opportunities
(
London
:
ICE Publishing
,
2005
),
55
65
.
13.
Oltulu
M.
and
Sahin
R.
, “
Effect of Nano-SiO2, Nano-Al2O3 and Nano-Fe2O3 Powders on Compressive Strengths and Capillary Water Absorption of Cement Mortar Containing Fly Ash: A Comparative Study
,”
Energy and Buildings
58
(March
2013
):
292
301
, https://doi.org/10.1016/j.enbuild.2012.12.014
14.
Liu
X. Y.
,
Chen
L.
,
Liu
A. H.
, and
Wang
X. R.
, “
Effect of Nano-CaCO3 on Properties of Cement Paste
,”
Energy Procedia
16
(
2012
):
991
996
, https://doi.org/10.1016/j.egypro.2012.01.158
15.
Meng
W.
and
Khayat
K. H.
, “
Effect of Graphite Nanoplatelets and Carbon Nanofibers on Rheology, Hydration, Shrinkage, Mechanical Properties, and Microstructure of UHPC
,”
Cement and Concrete Research
105
(March
2018
):
64
71
, https://doi.org/10.1016/j.cemconres.2018.01.001
16.
Metaxa
Z. S.
,
Konsta-Gdoutos
M.
, and
Shah
S. P.
, “
Carbon Nanofiber-Reinforced Cement-Based Materials
,”
Transportation Research Record
2142
, no. 
1
(January
2010
):
114
118
, https://doi.org/10.3141/2142-17
17.
Kirgiz
M. S.
, “
Advance Treatment by Nanographite for Portland Pulverised Fly Ash Cement (the Class F) Systems
,”
Composites Part B: Engineering
82
(December
2015
):
59
71
, https://doi.org/10.1016/j.compositesb.2015.08.003
18.
Konsta-Gdoutos
M. S.
,
Metaxa
Z. S.
, and
Shah
S. P.
, “
Highly Dispersed Carbon Nanotube Reinforced Cement-Based Materials
,”
Cement and Concrete Research
40
, no. 
7
(July
2010
):
1052
1059
, https://doi.org/10.1016/j.cemconres.2010.02.015
19.
Peyvandi
A.
,
Soroushian
P.
,
Abdol
N.
, and
Balachandra
A. M.
, “
Surface-Modified Graphite Nanomaterials for Improved Reinforcement Efficiency in Cementitious Paste
,”
Carbon
63
(November
2013
):
175
186
, https://doi.org/10.1016/j.carbon.2013.06.069
20.
Woodward
R. J.
and
Miller
E.
, “
Grouting Post-Tensioned Concrete Bridges: The Prevention of Voids
,”
Highway and Transportation
37
, no. 
6
(June
1990
):
9
17
.
21.
Pachta
V.
and
Goulas
D.
, “
Fresh and Hardened State Properties of Fiber Reinforced Lime-Based Grouts
,”
Construction and Building Materials
261
(November
2020
): 119818, https://doi.org/10.1016/j.conbuildmat.2020.119818
22.
Baltazar
L. G.
,
Henriques
F. M. A.
,
Rocha
D.
, and
Cidade
M. T.
, “
Experimental Characterization of Injection Grouts Incorporating Hydrophobic Silica Fume
,”
Journal of Materials in Civil Engineering
29
, no. 
10
(October
2017
): https://doi.org/10.1061/(ASCE)MT.1943-5533.0002021
23.
Papayianni
I.
and
Pachta
V.
, “
Experimental Study on the Performance of Lime-Based Grouts Used in Consolidating Historic Masonries
,”
Materials and Structures
48
, no. 
7
(July
2015
):
2111
2121
, https://doi.org/10.1617/s11527-014-0296-5
24.
Moseley
M. P.
,
Ground Improvement
(
Boca Raton, FL
:
CRC Press
,
1993
).
25.
Cry
M.
,
Legrand
C.
, and
Mouret
M.
, “
Study of the Shear Thickening Effect of Superplasticizers on the Rheological Behaviour of Cement Pastes Containing or Not Mineral Additives
,”
Cement and Concrete Research
30
, no. 
9
(September
2000
):
1477
1483
, https://doi.org/10.1016/S0008-8846(00)00330-6
26.
Celik
F.
and
Canakci
H.
, “
An Investigation of Rheological Properties of Cement-Based Grout Mixed with Rice Husk Ash (RHA)
,”
Construction and Building Materials
91
(August
2015
):
187
194
, https://doi.org/10.1016/j.conbuildmat.2015.05.025
27.
Sonebi
M.
,
Bassuoni
M. T.
,
Kwasny
J.
, and
Amanuddin
A. K.
, “
Effect of Nanosilica on Rheology, Fresh Properties, and Strength of Cement-Based Grouts
,”
Journal of Materials in Civil Engineering
27
, no. 
4
(April
2015
): 04014145, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001080
28.
Celik
F.
and
Akcuru
O.
, “
Rheological and Workability Effects of Bottom Ash Usage as a Mineral Additive on the Cement-Based Permeation Grouting Method
,”
Construction and Building Materials
263
(December
2020
): 120186, https://doi.org/10.1016/j.conbuildmat.2020.120186
29.
Sonebi
M.
, “
Rheological Properties of Grouts with Viscosity Modifying Agents as Diutan Gum and Welan Gum Incorporating Pulverised Fly Ash
,”
Cement and Concrete Research
36
, no. 
9
(September
2006
):
1609
1618
, https://doi.org/10.1016/j.cemconres.2006.05.016
30.
Yamamoto
Y.
and
Kobayashi
S.
, “
Effect of Temperature on the Properties of Superplasticized Concrete
,”
ACI Materials Journal
83
, no. 
1
(January
1986
):
80
87
.
31.
Gołaszewki
J.
and
Szwabowski
J.
, “
Influence of Superplasticizer on Rheological Behaviour of Fresh Cement Mortars
,”
Cement and Concrete Research
34
, no. 
2
(February
2004
):
235
248
, https://doi.org/10.1016/j.cemconres.2003.07.002
32.
Jolicoeur
C.
,
Sharman
J.
,
Otis
N.
,
Lebel
A.
,
Simard
M. A.
, and
Page
M.
, “
The Influence of Temperature on the Rheological Properties of Superplasticized Cement Pastes
,” in
Proceedings of the Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete,
ed.
Malhotra
V. M.
(
Farmington Hills, MI
:
ACI International
,
1997
):
379
415
.
33.
Petit
J.-Y.
,
Wirquin
E.
, and
Duthoit
B.
, “
Influence of Temperature on Yield Value of Highly Flowable Micromortars Made with Sulfonate-Based Superplasticizer
,”
Cement and Concrete Research
35
, no. 
2
(February
2005
):
256
266
, https://doi.org/10.1016/j.cemconres.2004.04.025
34.
Petit
J.-Y.
,
Khayat
K. H.
, and
Wirquin
E.
, “
Coupled Effect of Time and Temperature on Variations of Yield Value of Highly Flowable Mortar
,”
Cement and Concrete Research
36
, no. 
5
(May
2006
):
832
841
, https://doi.org/10.1016/j.cemconres.2005.11.001
35.
Sonebi
M.
,
Lachemi
M.
, and
Hossain
K. M. A.
, “
Optimisation of Rheological Parameters and Mechanical Properties of Superplasticised Cement Grouts Containing Metakaolin and Viscosity Modifying Admixture
,”
Construction and Building Materials
38
, no. 
1
(January
2013
):
126
138
, https://doi.org/10.1016/j.conbuildmat.2012.07.102
36.
Sonebi
M.
, “
Optimization of Cement Grouts Containing Silica Fume and Viscosity Modifying Admixture
,”
Journal of Materials and Civil Engineering
22
, no. 
4
(April
2010
):
332
342
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000026
37.
Çelik
F.
, “
The Observation of Permeation Grouting Method as Soil Improvement Technique with Different Grout Flow Models
,”
Geomechanics and Engineering
17
, no. 
4
(March
2019
):
367
374
, https://doi.org/10.12989/gae.2019.17.4.367
38.
Sonebi
M.
, “
Experimental Design to Optimize High-Volume of Fly Ash Grout in the Presence of Welan Gum and Super Plasticizer
,”
Materials and Structures
35
, no. 
250
(July
2002
):
373
380
, https://doi.org/10.1007/BF02483157
39.
Li
W.
,
Shaikh
F. U. A.
,
Wang
L.
,
Lu
Y.
,
Wang
B.
,
Jiang
C.
, and
Su
Y.
, “
Experimental Study on Shear Property and Rheological Characteristic of Superfine Cement Grouts with Nano-SiO2 Addition
,”
Construction and Building Materials
228
(December
2019
): 117046, https://doi.org/10.1016/j.conbuildmat.2019.117046
40.
Vakili
M.
,
Khosrojerdi
S.
,
Aghajannezhad
P.
, and
Yahyaei
M.
, “
A Hybrid Artificial Neural Network-Genetic Algorithm Modeling Approach for Viscosity Estimation of Graphene Nanoplatelets Nanofluid Using Experimental Data
,”
International Communications in Heat and Mass Transfer
82
(March
2017
):
40
48
.
41.
Bahiraei
M.
,
Heshmatian
S.
, and
Moayedi
H.
, “
Artificial Intelligence in the Field of Nanofluids: A Review on Applications and Potential Future Directions
,”
Powder Technology
353
(July
2019
):
276
301
, https://doi.org/10.1016/j.powtec.2019.05.034
42.
Sharma
A.
and
Kushvaha
V.
, “
Predictive Modelling of Fracture Behaviour in Silica-Filled Polymer Composite Subjected to Impact with Varying Loading Rates Using Artificial Neural Network
,”
Engineering Fracture Mechanics
239
(November
2020
): 107328, https://doi.org/10.1016/j.engfracmech.2020.107328
43.
Shahmansouri
A. A.
,
Yazdani
M.
,
Ghanbari
S.
,
Bengar
H. A.
,
Jafari
A.
, and
Ghatte
H. F.
, “
Artificial Neural Network Model to Predict the Compressive Strength of Eco-friendly Geopolymer Concrete Incorporating Silica Fume and Natural Zeolite
,”
Journal of Cleaner Production
279
(January
2021
): 123697, https://doi.org/10.1016/j.jclepro.2020.123697
44.
Nasr
D.
,
Behforouz
B.
,
Borujeni
P. R.
,
Borujeni
S. A.
, and
Zehtab
B.
, “
Effect of Nano-silica on Mechanical Properties and Durability of Self-Compacting Mortar Containing Natural Zeolite: Experimental Investigations and Artificial Neural Network Modeling
,”
Construction and Building Materials
229
(December
2019
): 116888, https://doi.org/10.1016/j.conbuildmat.2019.116888
45.
Behnood
A.
and
Golafshani
E. M.
, “
Predicting the Compressive Strength of Silica Fume Concrete Using Hybrid Artificial Neural Network with Multi-objective Grey Wolves
,”
Journal of Cleaner Production
202
(November
2018
):
54
64
, https://doi.org/10.1016/j.jclepro.2018.08.065
46.
Chithra
S.
,
Senthil Kumar
S. R. R.
,
Chinnaraju
K.
, and
Ashmita
F. A.
, “
A Comparative Study on the Compressive Strength Prediction Models for High Performance Concrete Containing Nano Silica and Copper Slag Using Regression Analysis and Artificial Neural Networks
,”
Construction and Building Materials
114
(July
2016
):
528
535
, https://doi.org/10.1016/j.conbuildmat.2016.03.214
47.
Çolak
A. B.
,
Akçaözoğlu
K.
,
Akçaözoğlu
S.
, and
Beller
G.
, “
Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study
,”
Arabian Journal for Science and Engineering
46
, no. 
5
(May
2021
):
4867
4881
, https://doi.org/10.1007/s13369-020-05280-1
48.
Weaver
K.
,
Dam Foundation Grouting
(
New York
:
American Society of Civil Engineers
,
1991
).
49.
Kauschınger
L. J.
,
Perry
E. R.
, and
Hankour
R.
, “
Methods to Estimate Composition of Jet Grout Bodies
,” in
ASCE Specialty Conference on Grouting, Soil Improvement and Geosynthetics
(
New York
:
American Society of Civil Engineers
,
1992
):
194
205
.
50.
Celik
F.
and
Canakci
H.
, “
Examination of the Mechanical Properties and Failure Pattern of Soilcrete Mixtures Modified with Rice Husk Ash
,”
European Journal of Environmental and Civil Engineering
24
, no. 
8
(April
2018
):
1245
1260
. https://doi.org/10.1080/19648189.2018.1458656
51.
Çolak
A. B.
, “
Developing Optimal Artificial Neural Network (ANN) to Predict the Specific Heat of Water Based Yttrium Oxide (Y2O3) Nanofluid According to the Experimental Data and Proposing New Correlation
,”
Heat Transfer Research
51
, no. 
17
(
2020
):
1565
1586
, https://doi.org/10.1615/HeatTransRes.2020034724
52.
Canakci
A.
,
Ozsahin
S.
, and
Varol
T.
, “
Modeling the Influence of a Process Control Agent on the Properties of Metal Matrix Composite Powders Using Artificial Neural Networks
,”
Powder Technology
228
(September
2012
):
26
35
.
53.
Vaferi
B.
,
Eslamloueyan
R.
, and
Ayatollahi
S.
, “
Automatic Recognition of Oil Reservoir Models from Well Testing Data by Using Multi-layer Perceptron Networks
,”
Journal of Petroleum Science and Engineering
77
, nos.
3–4
(June
2011
):
254
262
, https://doi.org/10.1016/j.petrol.2011.03.002
54.
Ahmadloo
E.
and
Azizi
S.
, “
Prediction of Thermal Conductivity of Various Nanofluids Using Artificial Neural Network
,”
International Communications in Heat and Mass Transfer
74
(May
2016
):
69
75
, https://doi.org/10.1016/j.icheatmasstransfer.2016.03.008
55.
Çolak
A. B.
, “
An Experimental Study on the Comparative Analysis of the Effect of the Number of Data on the Error Rates of Artificial Neural Networks
,”
International Journal of Energy Research
45
, no. 
1
(July
2020
):
478
500
, https://doi.org/10.1002/er.5680
56.
Esmaeilzadeh
F.
,
Teja
A. S.
, and
Bakhtyari
A.
, “
The Thermal Conductivity, Viscosity, and Cloud Points of Bentonite Nanofluids with N-Pentadecane as the Base Fluid
,”
Journal of Molecular Liquids
300
(February
2020
): 112307, https://doi.org/10.1016/j.molliq.2019.112307
57.
Barati-Harooni
A.
and
Najafi-Marghmaleki
A.
, “
An Accurate RBF-NN Model for Estimation of Viscosity of Nanofluids
,”
Journal of Molecular Liquids
224
(December
2016
):
580
588
, https://doi.org/10.1016/j.molliq.2016.10.049
58.
Rostamian
S. H.
,
Biglari
M.
,
Saedodin
S.
, and
Esfe
M. H.
, “
An Inspection of Thermal Conductivity of CuO-SWCNTs Hybrid Nanofluid Versus Temperature and Concentration Using Experimental Data, ANN Modeling and New Correlation
,”
Journal of Molecular Liquids
231
(April
2017
):
364
369
, https://doi.org/10.1016/j.molliq.2017.02.015
59.
Bonakdari
H.
and
Zaji
A. H.
, “
Open Channel Junction Velocity Prediction by Using a Hybrid Self-Neuron Adjustable Artificial Neural Network
,”
Flow Measurement and Instrumentation
49
(June
2016
):
46
51
, https://doi.org/10.1016/j.flowmeasinst.2016.04.003
60.
Çolak
A. B.
,
Güzel
T.
,
Yıldız
O.
, and
Özer
M.
, “
An Experimental Study on Determination of the Shottky Diode Current-Voltage Characteristic Depending on Temperature with Artificial Neural Network
,”
Physica B: Condensed Matter
608
(May
2021
): 412852, https://doi.org/10.1016/j.physb.2021.412852
61.
Ali
A.
,
Abdulrahman
A.
,
Garg
S.
,
Maqsood
K.
, and
Murshid
G.
, “
Application of Artificial Neural Networks (ANN) for Vapor-Liquid-Solid Equilibrium Prediction for CH4-CO2 Binary Mixture
,”
Greenhouse Gases: Science and Technology
9
, no. 
1
(February
2019
):
67
78
, https://doi.org/10.1002/ghg.1833
62.
Abdul Kareem
F. A.
,
Shariff
A. M.
,
Ullah
S.
,
Garg
S.
,
Dreisbach
F.
,
Keong
L. K.
, and
Mellon
N.
, “
Experimental and Neural Network Modeling of Partial Uptake for a Carbon Dioxide/Methane/Water Ternary Mixture on 13X Zeolite
,”
Energy Technology
5
, no. 
8
(August
2017
):
1373
1391
, https://doi.org/10.1002/ente.201600688
63.
Vafaei
M.
,
Afrand
M.
,
Sina
N.
,
Kalbasi
R.
,
Sourani
F.
, and
Teimouri
H.
, “
Evaluation of Thermal Conductivity of MgO-MWCNTs/EG Hybrid Nanofluids Based on Experimental Data by Selecting Optimal Artificial Neural Networks
,”
Physica E: Low-Dimensional Systems and Nanostructures
85
(January
2017
):
90
96
, https://doi.org/10.1016/j.physe.2016.08.020
64.
Akhgar
A.
,
Toghraie
D.
,
Sina
N.
, and
Afrand
M.
, “
Developing Dissimilar Artificial Neural Networks (ANNs) to Prediction the Thermal Conductivity of MWCNT-TiO2/Water-Ethylene Glycol Hybrid Nanofluid
,”
Powder Technology
355
(October
2019
):
602
610
, https://doi.org/10.1016/j.powtec.2019.07.086
65.
Çolak
A. B.
,
Yıldız
O.
,
Bayrak
M.
, and
Tezekici
B. S.
, “
Experimental Study for Predicting the Specific Heat of Water Based Cu-Al2O3 Hybrid Nanofluid Using Artificial Neural Network and Proposing New Correlation
,”
International Journal of Energy Research
44
, no. 
9
(May
2020
):
7198
7215
, https://doi.org/10.1002/er.5417
66.
Senff
L.
,
Labrincha
J. A.
,
Ferreira
V. M.
,
Hotza
D.
, and
Repette
W. L.
, “
Effect of Nano-silica on Rheology and Fresh Properties of Cement Pastes and Mortars
,”
Construction and Building Materials
23
, no. 
7
(July
2009
):
2487
2491
, https://doi.org/10.1016/j.conbuildmat.2009.02.005
67.
Deere
D. U.
, “Cement-Bentonite Grouting for Dams,” in
Proceedings of ASCE Specialty Conference on Grouting in Geotechnical Engineering
(
New York
:
American Society of Civil Engineers
,
1982
),
279
300
.
This content is only available via PDF.
You do not currently have access to this content.