The generalized polynomial chaos (gPC) mathematical technique, when integrated with the extended Kalman filter (EKF) method, provides a parameter estimation and state tracking method. The truncation of the series expansions degrades the link between parameter convergence and parameter uncertainty which the filter uses to perform the estimations. An empirically derived correction for this problem is implemented, which maintains the original parameter distributions. A comparison is performed to illustrate the improvements of the proposed approach. The method is demonstrated for parameter estimation on a regression system, where it is compared to the recursive least squares (RLS) method.
Issue Section:
Research Papers
Topics:
Chaos,
Filters,
Kalman filters,
Noise (Sound),
Parameter estimation,
Polynomials,
Sensors,
Vehicles,
Errors
References
1.
Blanchard
, E. D.
, Sandu
, A.
, and Sandu
, C.
, 2010
, “A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems
,” ASME J. Dyn. Syst., Meas., Control
, 132
(6
), p. 061404
.2.
Ljung
, L.
, 1999
, System Identification: Theory for the User
, Prentice Hall
, Upper Saddle River, NJ.3.
Fathy
, H. K.
, Kang
, D.
, and Stein
, J. L.
, 2008
, “Online Vehicle Mass Estimation Using Recursive Least Squares and Supervisory Data Extraction
,” American Control Conference
(ACC
), Seattle, WA, June 11–13, pp. 1842–1848.4.
Pizarro
, O.
, and Sbarbaro
, D.
, 1998
, “Parameter Subset Identification by Recursive Least Squares
,” American Control Conference
(ACC
), Philadelphia, PA, June 24–26, pp. 3590–3591.5.
Chensarkar
, M. M.
, and Desai
, U. B.
, 1997
, “A Robust Recursive Least Squares Algorithm
,” IEEE Trans. Signal Process.
, 45
(7
), pp. 1726
–1735
.6.
Chen
, J.
, and Ding
, F.
, 2011
, “Modified Stochastic Gradient Identification Algorithms With Fast Convergence Rates
,” J. Vib. Control
, 17
(9
), pp. 1281
–1286
.7.
Kouritzin
, M. A.
, 1996
, “On the Convergence of Linear Stochastic Approximation Procedures
,” IEEE Trans. Inf. Theory
, 42
(4
), pp. 1305
–1309
.8.
Gill
, J.
, 2009
, Bayesian Methods: A Social and Behavioral Sciences Approach
, 2nd ed., Chapman and Hall/CRC Press
, London/Boca Raton, FL.9.
Par
, T. C.
, Zweiri
, Y. H.
, Althoefer
, K.
, and Seneviratne
, L. D.
, 2005
, “Online Soil Parameter Estimation Scheme Based on Newton-Raphson Method for Autonomous Excavation
,” IEEE/ASME Trans. Mechatronics
, 10
(2
), pp. 221
–229
.10.
More
, J. J.
, 1977
, “The Levenberg-Marquardt Algorithm: Implementation and Theory
,” Conference on Numerical Analysis
, Dundee, UK, June 28–July 1, pp. 105
–116
.11.
Astrom
, K. J.
, and Eykhoff
, P.
, 1971
, “System Identification—A Survey
,” Automatica
, 7
(2
), pp. 123
–162
.12.
Sandu
, A.
, Sandu
, C.
, and Ahmadian
, M.
, 2006
, “Modeling Multibody Systems With Uncertainties—Part I: Theoretical and Computational Aspects
,” Multibody Syst. Dyn.
, 15
(4
), pp. 369
–391
.13.
Sandu
, C.
, Sandu
, A.
, and Ahmadian
, M.
, 2006
, “Modeling Multibody Systems With Uncertainties—Part II: Numerical Applications
,” Multibody Syst. Dyn.
, 15
(3
), pp. 241
–262
.14.
Hays
, J.
, 2011
, “Parametric Optimal Design of Uncertain Dynamical Systems
,” Ph.D. dissertation
, Virginia Tech, Blacksburg, VA.15.
Blanchard
, E. D.
, 2010
, “Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems With Uncertain Parameters
,” Ph.D. dissertation
, Virginia Tech, Blacksburg, VA.16.
Blanchard
, E. D.
, Sandu
, A.
, and Sandu
, C.
, 2009
, “Polynomial Chaos-Based Parameter Estimation Methods Applied to Vehicle System
,” IMechE
, 224
(1
), pp. 59
–81
.17.
Southward
, S. C.
, 2007
, “Real-Time Parameter Id Using Polynomial Chaos Expansions
,” ASME
Paper No. IMECE2007-43745.18.
Pence
, B. L.
, 2011
, “Recursive Parameter Estimation Using Polynomial Chaos Theory Applied to Vehicle Mass Estimation for Rough Terrain
,” Ph.D. dissertation
, University of Michigan, Ann Arbor, MI.19.
Pence
, B.
, Hays
, J.
, Fathy
, H.
, Sandu
, C.
, and Stein
, J.
, 2013
, “Vehicle Sprung Mass Estimation for Rough Terrain
,” Int. J. Veh. Des.
, 61
(1/2/3/4), pp. 3
–26
.20.
Shimp
, S. K.
, 2008
, “Vehicle Sprung Mass Parameter Estimation Using an Adaptive Polynomial-Chaos Method
,” Master's thesis
, Virginia Tech, Blacksburg, VA.21.
Xiu
, D.
, 2007
, “Efficient Collocational Approach for Parametric Uncertainty Analysis
,” Commun. Comput. Phys.
, 2
(2
), pp. 293
–309
.22.
Cheng
, H.
, and Sandu
, A.
, 2009
, “Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems
,” Math. Comput. Simul.
, 79
(11
), pp. 3278
–3295
.23.
Xiu
, D.
, 2009
, “Fast Numerical Methods for Stochastic Computations: A Review
,” Commun. Comput. Phys.
, 5
(2–4), pp. 242
–272
.24.
Xiu
, D.
, and Hesthaven
, J. S.
, 2005
, “High-Order Collocation Methods for Differential Equations With Random Inputs
,” SIAM J. Sci. Comput.
, 27
(3
), pp. 1118
–1139
.25.
Cheng
, H.
, and Sandu
, A.
, 2010
, “Collocation Least-Squares Polynomial Chaos Method
,” Spring Simulation Multiconference, Orlando, FL, Apr. 11–15, Paper No. 80
.26.
Welch
, G.
, and Bishop
, G.
, 2006
, “An Introduction to the Kalman Filter
,” The University of North Carolina at Chapel Hill, Chapel Hill, NC, Report No. TR 95-041
.27.
Zarchan
, P.
, and Musoff
, H.
, 2009
, Fundamentals of Kalman Filtering: A Practical Approach
, Vol. 232
, American Institute of Aeronautics and Astronautics
, Reston, VA.28.
Li
, J.
, and Xiu
, D.
, 2009
, “A Generalized Polynomial Chaos Based Ensemble Kalman Filter With High Accuracy
,” J. Comput. Phys.
, 228
(15
), pp. 5454
–5469
.29.
Weisburg
, S.
, 1980
, Applied Linear Regression
, Wiley
, Chichester, UK.Copyright © 2018 by ASME
You do not currently have access to this content.