Abstract

In this work, the authors draw comparisons between the Floquet theory and Normal Forms technique and apply them towards the investigation of stability bounds for linear time periodic systems. Though the Normal Forms technique has been predominantly used for the analysis of nonlinear equations, in this work, the authors utilize it to transform a linear time periodic system to a time-invariant system, similar to the Lyapunov–Floquet (L–F) transformation. The authors employ an intuitive state augmentation technique, modal transformation, and near identity transformations to facilitate the application of time-independent Normal Forms. This method provides a closed form analytical expression for the state transition matrix (STM). Additionally, stability analysis is performed on the transformed system and the comparative results of dynamical characteristics and temporal variations of a simple linear Mathieu equation are also presented in this work.

References

References
1.
Rega
,
G.
,
2020
, “
Nonlinear Dynamics in Mechanics and Engineering: 40 Years of Developments and Ali h. nayfeh's Legacy
,”
Nonlinear Dyn.
,
99
(
1
), pp.
11
34
.10.1007/s11071-019-04833-w
2.
Sinha
,
S.
, and
Butcher
,
E.
,
1997
, “
Symbolic Computation of Fundamental Solution Matrices for Linear Time-Periodic Dynamical Systems
,”
J. Sound Vib.
,
206
(
1
), pp.
61
85
.10.1006/jsvi.1997.1079
3.
Iakubovich
,
V. A.
, and
Starzhinskiĭ
,
V. M.
,
1975
,
Linear Differential Equations With Periodic Coefficients
, Vol.
2
,
Wiley
,
New York
.
4.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
Wiley-VCH
,
Weinheim, Germany
.
5.
Sanders
,
J. A.
,
Verhulst
,
F.
, and
Murdock
,
J. A.
,
2007
,
Averaging Methods in Nonlinear Dynamical Systems
, Vol.
59
,
Springer
,
New York
.
6.
Sinha
,
S. C.
,
Pandiyan
,
R.
, and
Bibb
,
J. S.
,
1996
, “
Liapunov-Floquet Transformation: Computation and Applications to Periodic Systems
,”
ASME J. Vib. Acoust.
,
118
(
2
), pp.
209
219
.10.1115/1.2889651
7.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2018
, “
An Approximate Analysis of Quasi-Periodic Systems Via Floquét Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021008
.10.1115/1.4037797
8.
Wu
,
M.-Y.
,
1978
, “
Transformation of a Linear Time-Varying System Into a Linear Time-Invariant System
,”
Int. J. Control
,
27
(
4
), pp.
589
602
.10.1080/00207177808922395
9.
Sinha
,
S.
, and
Juneja
,
V.
,
1991
, “
An Approximate Analytical Solution for Systems With Periodic Coefficients Via Symbolic Computation
,”
32nd Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Baltimore, MD
, Apr. 8–10, p.
1020
.10.2514/6.1991-1020
10.
Sharma
,
A.
, and
Sinha
,
S.
,
2020
, “
Control of Nonlinear Systems Exhibiting Chaos to Desired Periodic or Quasi-Periodic Motions
,”
Nonlinear Dyn.
,
99
(
1
), pp.
559
574
.10.1007/s11071-019-04843-8
11.
Poincaré
,
H.
,
1899
,
Les Méthodes Nouvelles de la Mécanique Céleste
,
3
,
Gauthier-Villars et Fils
,
Paris, France
.
12.
Birkhoff
,
G. D.
,
1927
,
Dynamical Systems
, Vol.
9
,
American Mathematical Society
,
Providence, RI
.
13.
Moser
,
J.
, and
Saari
,
D.
,
1975
, “
Stable and Random Motions in Dynamical Systems
,”
Phys. Today
,
28
(
3
), pp.
47
48
.10.1063/1.3068879
14.
Arnol'd
,
V. I.
,
2013
,
Mathematical Methods of Classical Mechanics
, Vol.
60
,
Springer Science & Business Media
,
New York
.
15.
Nayfeh
,
A. H.
,
2011
,
The Method of Normal Forms
,
Wiley-VCH
,
Weinheim, Germany
.
16.
Gabale
,
A. P.
, and
Sinha
,
S.
,
2009
, “
A Direct Analysis of Nonlinear Systems With External Periodic Excitations Via Normal Forms
,”
Nonlinear Dyn.
,
55
(
1–2
), pp.
79
93
.10.1007/s11071-008-9346-2
17.
Waswa
,
P. M.
,
Redkar
,
S.
, and
Subramanian
,
S. C.
,
2020
, “
A Plain Approach for Center Manifold Reduction of Nonlinear Systems With External Periodic Excitations
,”
J. Vib. Control
,
26
(
11–12
), pp.
929
940
.10.1177/1077546319890213
18.
Waswa
,
P. M. B.
, and
Redkar
,
S.
,
2019
, “
Lucid Analysis of Periodically Forced Nonlinear Systems Via Normal Forms
,”
ASME Paper No. DETC2019-97100
.10.1115/DETC2019-97100
19.
Waswa
,
P. M.
, and
Redkar
,
S.
,
2020
, “
A Direct Approach for Simplifying Nonlinear Systems With External Periodic Excitation Using Normal Forms
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1065
1088
.10.1007/s11071-019-05334-6
20.
C. Subramanian
,
S.
,
Dye
,
M.
, and
Redkar
,
S.
,
2020
, “
Dynamic Analysis of Suction Stabilized Floating Platforms
,”
J. Mar. Sci. Eng.
,
8
(
8
), p.
587
.10.3390/jmse8080587
21.
Verhulst
,
F.
,
2012
,
Nonlinear Differential Equations and Dynamical Systems
,
Universitext. Springer
,
Berlin/Heidelberg
.
22.
Kovacic
,
I.
,
Rand
,
R.
, and
Mohamed Sah
,
S.
,
2018
, “
Mathieu's Equation and Its Generalizations: Overview of Stability Charts and Their Features
,”
ASME Appl. Mech. Rev.
,
70
(
2
), p.
020802
.10.1115/1.4039144
23.
Driscoll
,
T. A.
,
Hale
,
N.
, and
Trefethen
,
L. N.
,
2014
,
Chebfun Guide
, 1st ed.,
Pafnuty Publications
,
Oxford, UK
.
24.
Susheelkumar
,
C.
,
Redkar
,
S.
, and
Sugar
,
T.
,
2017
, “
Parametric Resonance and Energy Transfer in Suction Stabilized Floating Platforms: A Brief Survey
,”
Int. J. Dyn. Control
,
5
(
3
), pp.
931
945
.10.1007/s40435-015-0210-1
25.
Le
,
T.
,
Bhat
,
S. G.
,
Subramanian
,
S. C.
,
Waswa
,
P. M. B.
, and
Redkar
,
S.
,
2019
, “
Design and Analysis of an Auto-Parametrically Excited Platform for Active Vibration Control
,”
ASME
Paper No. DETC2019-97471.10.1115/DETC2019-97471
You do not currently have access to this content.