Abstract

Despite the huge efforts to deploy wireless communications technologies in smart manufacturing scenarios, some manufacturing sectors are still slow to massive adoption. This slowness of widespread adoption of wireless technologies in cyber-physical systems (CPSs) is partly due to not fully understanding the detailed impact of wireless deployment on the physical processes especially in the cases that require low latency and high reliability communications. In this article, we introduce an approach to integrate wireless network traffic data and physical processes data to evaluate the impact of wireless communications on the performance of a manufacturing factory work cell. The proposed approach is introduced through the discussion of an engineering use case. A testbed that emulates a robotic manufacturing factory work cell is constructed using two collaborative-grade robot arms, machine emulators, and wireless communication devices. All network traffic data are collected and physical process data, including the robots and machines states and various supervisory control commands, is also collected and synchronized with the network data. The data are then integrated where redundant data are removed and correlated activities are connected in a graph database. A data model is proposed, developed, and elaborated; the database is then populated with events from the testbed, and the resulting graph is presented. Query commands are then presented as a means to examine and analyze network performance and relationships within the components of the network. Moreover, we detail the way by which this approach is used to study the impact of wireless communications on the physical processes and illustrate the impact of various wireless network parameters on the performance of the emulated manufacturing work cell. This approach can be deployed as a building block for various descriptive and predictive wireless analysis tools for CPS.

References

References
1.
Martinez
,
B.
,
Cano
,
C.
, and
Vilajosana
,
X.
,
2019
, “
A Square Peg in a Round Hole: The Complex Path for Wireless in the Manufacturing Industry
,”
IEEE Communi. Mag.
,
57
(
4
), pp.
109
115
. 10.1109/MCOM.2019.1800570
2.
Huang
,
V. K. L.
,
Pang
,
Z.
,
Chen
,
C. A.
, and
Tsang
,
K. F.
,
2018
, “
New Trends in the Practical Deployment of Industrial Wireless: From Noncritical to Critical Use Cases
,”
IEEE Indust. Electron. Mag.
,
12
(
2
), pp.
50
58
. 10.1109/MIE.2018.2825480
3.
Vilajosana
,
X.
,
Cano
,
C.
,
Martínez
,
B.
,
Tuset
,
P.
,
Melià
,
J.
, and
Adelantado
,
F.
,
2018
, “
The Wireless Technology Landscape in the Manufacturing Industry: A Reality Check
,”
ArXiv, abs/1801.03648
.
4.
Kagermann
,
H.
,
Wahlster
,
W.
, and
Helbig
,
J.
,
2013
, “
Recommendations for Implementing the Strategic Initiative Industrie 4.0 Working Group
,” https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf, Accessed September 3, 2020.
5.
Barnard Feeney
,
A.
,
Frechette
,
S.
, and
Srinivasan
,
V.
,
2017
,
Cyber-Physical Systems Engineering for Manufacturing
,
Springer International Publishing
,
Cham
, pp.
81
110
.
6.
Dai
,
H.-N.
,
Wang
,
H.
,
Xu
,
G.
,
Wan
,
J.
, and
Imran
,
M.
,
2019
, “
Big Data Analytics for Manufacturing Internet of Things: Opportunities, Challenges and Enabling Technologies
,”
Enter. Inform. Syst.
, pp.
1
25
. https://doi.org/10.1080/17517575.2019.1633689
7.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-Driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48
(Part C), pp.
157
169
. 10.1016/j.jmsy.2018.01.006
8.
Drake
,
M.
,
2019
, “
A Comparison of NoSQL Database Management Systems and Models
,” https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models, Accessed September 3, 2020.
9.
Lade
,
P.
,
Ghosh
,
R.
, and
Srinivasan
,
S.
,
2017
, “
Manufacturing Analytics and Industrial Internet of Things
,”
IEEE Int. Syst.
,
32
(
3
), pp.
74
79
. 10.1109/MIS.2017.49
10.
Angles
,
R.
, and
Gutierrez
,
C.
,
2008
, “
Survey of Graph Database Models
,”
ACM Comput. Surv.
,
40
(
1
), pp.
1
39
. 10.1145/1322432.1322433
11.
Liu
,
Y.
,
Candell
,
R.
,
Kashef
,
M.
, and
Montgomery
,
K.
,
2019
, “
A Collaborative Work Cell Testbed for Industrial Wireless Communications–The Baseline Design
,”
2019 IEEE 28th International Symposium on Industrial Electronics (ISIE)
,
Vancouver, BC, Canada
,
June 12–14
, pp.
1315
1321
.
12.
Candell
,
R.
,
Kashef
,
M.
,
Liu
,
Y.
,
Montgomery
,
K.
, and
Foufou
,
S.
,
2020
, “
A Graph Database Approach to Wireless IIoT Work-Cell Performance Evaluation
,”
2020 IEEE International Conference on Industrial Technology (ICIT)
,
Buenos Aires, Argentina
,
Feb. 26–28
, pp.
251
258
. https://www.nist.gov/publications/graph-database-approach-wireless-iiot-work-cell-performance-evaluation
13.
Ahmadi
,
A.
,
Moradi
,
M.
,
Cherifi
,
C.
,
Cheutet
,
V.
, and
Ouzrout
,
Y.
,
2019
, “
Wireless Connectivity of CPS for Smart Manufacturing: A Survey
,”
International Conference on Software, Knowledge Information
,
Phnom Penh, Cambodia
,
Dec. 3–5, 2018
, pp.
1
8
,
Industrial Management and Applications, SKIMA
. https:.//dx.doi.org/10.1109/SKIMA.2018.8631535
14.
Montgomery
,
K.
,
Candell
,
R.
,
Liu
,
Y.
, and
Hany
,
M.
,
2019
, “
Wireless User Requirements for the Factory Work-Cell
,”
Technical Report
, Gaithersburg, MD, NIST Advanced Manufacturing Series 300-8. https://doi.org/10.6028/NIST.AMS.300-8
15.
Pang
,
Z.
,
Luvisotto
,
M.
, and
Dzung
,
D.
,
2017
, “
Wireless High-Performance Communications: The Challenges and Opportunities of a New Target
,”
IEEE Indus. Elec. Magazine
,
11
(
3
), pp.
20
25
. http://dx.doi.org/10.1109/MIE.2017.2703603
16.
Damsaz
,
M.
,
Guo
,
D.
,
Peil
,
J.
,
Stark
,
W.
,
Moayeri
,
N.
, and
Candell
,
R.
,
2017
, “
Channel Modeling and Performance of Zigbee Radios in an Industrial Environment
,”
IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS
,
Trondheim, Norway
,
May 31–June 2
, pp.
1
10
. http://dx.doi.org/10.1109/WFCS.2017.7991975
17.
Candell
,
R.
,
Remley
,
K. A.
,
Quimby
,
J. T.
,
Novotny
,
D.
,
Curtin
,
A.
,
Papazian
,
P. B.
,
Kashef
,
M.
, and
Diener
,
J.
,
2017
, “
Industrial Wireless Systems Radio Propagation Measurements
,”
Technical Report
, NIST Technical Note 1951. https://doi.org/10.6028/NIST.TN.1951
18.
Islam
,
K.
,
Shen
,
W.
, and
Wang
,
X.
,
2012
, “
Wireless Sensor Network Reliability and Security in Factory Automation: A Survey
,”
IEEE Trans. Syst., Man Cyber. Part C: Appl. Rev.
,
42
(
6
), pp.
1243
1256
. 10.1109/TSMCC.2012.2205680
19.
Peil
,
J.
,
Damsaz
,
M.
,
Guo
,
D.
,
Stark
,
W.
,
Candell
,
R.
, and
Moayeri
,
N.
,
2017
, “
Channel Modeling and Performance of Zigbee Radios in an Industrial Environment
,”
NIST
,
Gaithersburg, MD
,
Technical Report, Report No. NIST-TN-194
.
20.
Lu
,
C.
,
Saifullah
,
A.
,
Li
,
B.
,
Sha
,
M.
,
Gonzalez
,
H.
,
Gunatilaka
,
D.
,
Wu
,
C.
,
Nie
,
L.
, and
Chen
,
Y.
,
2016
, “
Real-Time Wireless Sensor-Actuator Networks for Industrial Cyber-Physical Systems
,”
Proc. IEEE
,
104
(
5
), pp.
1013
1024
. http://dx.doi.org/10.1109/JPROC.2015.2497161
21.
Aminian
,
B.
,
Araujo
,
J.
,
Johansson
,
M.
, and
Johansson
,
K. H.
,
2013
, “
GISOO: A Virtual Testbed for Wireless Cyber-Physical Systems
,”
IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society
,
Vienna, Austria
,
Nov. 10–13
,
IEEE
, pp.
5588
5593
. http://dx.doi.org/10.1109/IECON.2013.6700049
22.
Jecan
,
E.
,
Pop
,
C.
,
Padrah
,
Z.
,
Ratiu
,
O.
, and
Puschita
,
E.
,
2018
, “
A Dual-Standard Solution for Industrial Wireless Sensor Network Deployment: Experimental Testbed and Performance Evaluation
,”
2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)
,
Imperia, Italy
,
June 13–15
,
IEEE
, pp.
1
9
.
23.
Ding
,
Y.
,
Hong
,
S. H.
,
Lu
,
R.
,
Kim
,
J.
,
Lee
,
Y. H.
,
Xu
,
A.
, and
Xiaobing
,
L.
,
2015
, “
Experimental Investigation of the Packet Loss Rate of Wireless Industrial Networks in Real Industrial Environments
,”
2015 IEEE International Conference on Information and Automation
,
Lijiang, China
,
Aug. 8–10
,
IEEE
, pp.
1048
– 1053
.
24.
Liu
,
Q.
,
Ma
,
L.
,
Fan
,
S.-Z.
,
Abbod
,
M. F.
,
Lu
,
C.-W.
,
Lin
,
T.-Y.
,
Jen
,
K.-K.
,
Wu
,
S.-J.
, and
Shieh
,
J.-S.
,
2018
, “
Design and Evaluation of a Real Time Physiological Signals Acquisition System Implemented in Multi-Operating Rooms for Anesthesia
,”
J. Med. Syst.
,
42
(
8
), p.
148
. 10.1007/s10916-018-0999-1
25.
Fink
,
J.
,
Ribeiro
,
A.
, and
Kumar
,
V.
,
2013
, “
Robust Control of Mobility and Communications in Autonomous Robot Teams
,”
IEEE Access
,
1
, pp.
290
309
. 10.1109/ACCESS.2013.2262013
26.
Liang
,
W.
,
Zheng
,
M.
,
Zhang
,
J.
,
Shi
,
H.
,
Yu
,
H.
,
Yang
,
Y.
,
Liu
,
S.
,
Yang
,
W.
, and
Zhao
,
X.
,
2019
, “
WIA-FA and Its Applications to Digital Factory: A Wireless Network Solution for Factory Automation
,”
Proc. IEEE
,
107
(
6
), pp.
1053
1073
. 10.1109/JPROC.2019.2897627
27.
Candell
,
R.
,
2015
, “
A Research Framework for Industrial Wireless Deployments
,”
Proceedings of 2015 ISA Instrumentation Symposium
,
Houston, TX
,
Nov. 10–11
, Presentation Slides available http://dx.doi.org/10.13140/RG.2.1.3857.5441.
28.
Liu
,
Y.
,
Candell
,
R.
,
Lee
,
K.
, and
Moayeri
,
N.
,
2016
, “
A Simulation Framework for Industrial Wireless Networks and Process Control Systems
,”
2016 IEEE World Conference on Factory Communication Systems (WFCS)
,
Aveiro, Portugal
,
May 3–6
,
IEEE
, pp.
1
11
.
29.
Wang
,
J.
,
Zhang
,
W.
,
Shi
,
Y.
,
Duan
,
S.
, and
Liu
,
J.
,
2018
, “
Industrial big data analytics: Challenges, methodologies, and applications
,”
CoRR, abs/1807.01016
.
30.
Lee
,
J.
,
2015
,
Industrial Big Data
, Vol.
7
,
Mechanical Industry Press
,
China
.
31.
Raptis
,
T. P.
,
Passarella
,
A.
, and
Conti
,
M.
,
2019
, “
Data Management in Industry 4.0: State of the Art and Open Challenges
,”
IEEE Access
,
7
, pp.
97052
97093
. 10.1109/ACCESS.2019.2929296
32.
Wan
,
J.
,
Tang
,
S.
,
Li
,
D.
,
Wang
,
S.
,
Liu
,
C.
,
Abbas
,
H.
, and
Vasilakos
,
A. V.
,
2017
, “
A Manufacturing Big Data Solution for Active Preventive Maintenance
,”
IEEE Trans. Indust. Inform.
,
13
(
4
), pp.
2039
2047
. 10.1109/TII.2017.2670505
33.
GE
, “
Unlocking Machine Data to Turn Insights Into Powerful Outcomes
,” https://www.ge.com/digital/, Accessed July 1, 2019.
34.
Brian Courtney
, “
Industrial Big Data Analytics: The Present and Future
,” https://www.isa.org/intech/20140801/, Accessed July 1, 2019.
35.
ABB
, “
Big Data and Decision-Making in Industrial Plants
,” https://new.abb.com/cpm/production-optimization/big-data-analytics-decision-making, Accessed July 1, 2019.
36.
Kumar Kaliyar
,
R.
,
2015
, “
Graph Databases: A Survey
,”
International Conference on Computing
,
Noida, India
,
May 15–16
,
Communication Automation
, pp.
785
790
.
37.
Vyawahare
,
H. R.
, and
Karde
,
P. P.
,
2015
, “
An Overview on Graph Database Model
,”
Int. J. Innovat. Res. Comput. Communicat. Eng. (IJIRCCE)
,
3
(
8
), pp.
7454
7457
.
38.
Satone
,
K. N.
,
2014
, “
Modern Graph Databases Models
,”
Int. J. Eng. Res. Appl. (IJERA)
,
5
, pp.
19
24
.
39.
Wood
,
P. T.
,
2012
, “
Query Languages for Graph Databases
,”
SIGMOD Record
,
41
(
1
), pp.
50
60
. 10.1145/2206869.2206879
40.
Jadhav
,
P. S.
, and
Oberoi
,
R. K.
,
2015
, “
Comparative Analysis of Graph Database Models Using Classification and Clustering by Using Weka Tool
,”
Int. J. Adv. Res. Comp. Sci. Soft. Eng.
,
5
(
2
), pp.
438
445
.
41.
Macko
,
P.
,
Margo
,
D.
, and
Seltzer
,
M.
,
2013
, “
Performance Introspection of Graph Databases
,”
Proceedings of the 6th International Systems and Storage Conference, SYSTOR ’13
,
Haifa, Israel
,
June
,
ACM
, pp.
1
10
.
42.
Webber
,
J.
, and
Robinson
,
I.
,
2015
, “
The Top 5 Use Cases of Graph Databases
,”
White Paper, Neo4j
, https://go.neo4j.com/rs/710-RRC-335/images/Neo4j_Top5_UseCases_Graph%20Databases.pdf, Accessed September 3, 2020.
43.
Küçkkeçeci
,
C.
, and
Yazici
,
A.
,
2019
, “
Multilevel Object Tracking in Wireless Multimedia Sensor Networks for Surveillance Applications Using Graph-Based Big Data
,”
IEEE Access
,
7
, pp.
67818
67832
. 10.1109/ACCESS.2019.2918765
44.
Gomez-Rodriguez
,
M.
,
Leskovec
,
J.
, and
Krause
,
A.
,
2012
, “
Inferring Networks of Diffusion and Influence
,”
ACM Trans. Knowl. Discov. Data
,
5
(
4
), pp.
211
2137
. 10.1145/2086737.2086741
45.
Skhiri
,
S.
, and
Jouili
,
S.
,
2013
,
Large Graph Mining: Recent Developments, Challenges and Potential Solutions
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
103
124
.
46.
Kan
,
B.
,
Zhu
,
W.
,
Liu
,
G.
,
Chen
,
X.
,
Shi
,
D.
, and
Yu
,
W.
,
2017
, “
Topology Modeling and Analysis of a Power Grid Network Using a Graph Database
,”
Int. J. Comput. Intell. Syst.
,
10
(
1
), p.
1355
. 10.2991/ijcis.10.1.96
47.
Ashwin Kumar
,
T. K.
,
Thomas
,
J. P.
, and
Parepally
,
S.
,
2017
, “
An Efficient and Secure Information Retrieval Framework for Content Centric Networks
,”
J. Parallel Distrib. Comput.
,
104
, pp.
223
233
. 10.1016/j.jpdc.2017.01.024
48.
Barik
,
M. S.
,
Mazumdar
,
C.
, and
Gupta
,
A.
,
2016
, “Network Vulnerability Analysis Using a Constrained Graph Data Model,”
I.
Ray
,
M.
Gaur
,
M.
Conti
,
D.
Sanghi
, and
V.
Kamakoti
, eds., Information Systems Security, ICISS 2016, Lecture Notes in Computer Science, Vol.
10063
.
Springer
,
Cham
, pp.
263
282
.
49.
Diederichsen
,
L.
,
Choo
,
K.-K. R.
, and
Le-Khac
,
N.-A.
,
2019
, “A Graph Database-Based Approach to Analyze Network Log Files,”
Network and System Security
,
Huang
,
X.
, and
Liu
,
J. K.
, eds.,
Springer International Publishing
,
New York
, pp.
53
73
.
50.
Esser
,
S.
,
2019
, “
Using Graph Data Structures for Event Logs
,” Thesis, Department of Mathematics and Computer Science, Eindhoven University of Technology.
51.
Universal Robots
, “
Real-Time Data Exchange (RTDE) Guide
,” https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/real-time-data-exchange-rtde-guide-22229, Accessed January 8, 2020.
52.
Technical Committee
,
2008
, “
IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems—Redline
,”
IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002)—Redline
, pp.
1
300
.
53.
Robinson
,
I.
,
Webber
,
J.
, and
Eifrem
,
E.
,
2015
, “Graph Database Internals,”
Graph Databases
, 2nd ed.,
O’Relly
,
Sebastopol, CA
, Chap. 7, p.
149
170
.
54.
Besta
,
M.
,
Peter
,
E.
,
Gerstenberger
,
R.
,
Fischer
,
M.
,
Podstawski
,
M.
,
Barthels
,
C.
,
Alonso
,
G.
, and
Hoefler
,
T.
,
2019
, “
Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries
,” arXiv:1910.09017
55.
Fosic
,
I.
, and
Solic
,
K.
,
2019
, “
Graph Database Approach for Data Storing, Presentation and Manipulation
,”
42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
,
Opatija, Croatia
,
May 20–24
,
IEEE
, pp.
1548
1552
.
56.
Huang
,
H.
, and
Dong
,
Z.
,
2013
, “
Research on Architecture and Query Performance Based on Distributed Graph Database Neo4j
,”
3rd International Conference on Consumer Electronics, Communications and Networks
,
Xianning, China
,
Nov. 20–22
,
IEEE
, pp.
533
536
.
57.
Candell
,
R.
,
Hany
,
M.
,
Liu
,
Y.
, and
Montgomery
,
K.
, “
Reliable High Performance Wireless Systems for Factory Automation
,” https://www.nist.gov/programs-projects/reliable-high-performance-wireless-systems-factory-automation, Accessed September 2, 2020.
You do not currently have access to this content.