Abstract

Integrated computational materials engineering (ICME) models have been a crucial building block for modern materials development, relieving heavy reliance on experiments and significantly accelerating the materials design process. However, ICME models are also computationally expensive, particularly with respect to time integration for dynamics, which hinders the ability to study statistical ensembles and thermodynamic properties of large systems for long time scales. To alleviate the computational bottleneck, we propose to model the evolution of statistical microstructure descriptors as a continuous-time stochastic process using a non-linear Langevin equation, where the probability density function (PDF) of the statistical microstructure descriptors, which are also the quantities of interests (QoIs), is modeled by the Fokker–Planck equation. We discuss how to calibrate the drift and diffusion terms of the Fokker–Planck equation from the theoretical and computational perspectives. The calibrated Fokker–Planck equation can be used as a stochastic reduced-order model to simulate the microstructure evolution of statistical microstructure descriptors PDF. Considering statistical microstructure descriptors in the microstructure evolution as QoIs, we demonstrate our proposed methodology in three integrated computational materials engineering (ICME) models: kinetic Monte Carlo, phase field, and molecular dynamics simulations.

References

1.
Grigoriu
,
M.
,
2009
, “
Reduced Order Models for Random Functions. Application to Stochastic Problems
,”
Appl. Math. Model.
,
33
(
1
), pp.
161
175
.
2.
Sarkar
,
S.
,
Warner
,
J. E.
,
Aquino
,
W.
, and
Grigoriu
,
M. D.
,
2014
, “
Stochastic Reduced Order Models for Uncertainty Quantification of Intergranular Corrosion Rates
,”
Corros. Sci.
,
80
, pp.
257
268
.
3.
Mignolet
,
M. P.
, and
Soize
,
C.
,
2008
, “
Stochastic Reduced Order Models for Uncertain Geometrically Nonlinear Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
45–48
), pp.
3951
3963
.
4.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Courier Corporation
,
New York
.
5.
Goudon
,
T.
, and
Monasse
,
L.
,
2020
, “
Fokker–Planck Approach of Ostwald Ripening: Simulation of a Modified Lifschitz-Slyozov-Wagner System With a Diffusive Correction
,”
SIAM J. Sci. Comput.
,
42
(
1
), pp. B157–B154.
6.
Ganapathysubramanian
,
B.
, and
Zabaras
,
N.
,
2007
, “
Modeling Diffusion in Random Heterogeneous Media: Data-Driven Models, Stochastic Collocation and the Variational Multiscale Method
,”
J. Comput. Phys.
,
226
(
1
), pp.
326
353
.
7.
Bhattacharjee
,
S.
, and
Matouš
,
K.
,
2016
, “
A Nonlinear Manifold-Based Reduced Order Model for Multiscale Analysis of Heterogeneous Hyperelastic Materials
,”
J. Comput. Phys.
,
313
, pp.
635
653
.
8.
Latypov
,
M. I.
, and
Kalidindi
,
S. R.
,
2017
, “
Data-Driven Reduced Order Models for Effective Yield Strength and Partitioning of Strain in Multiphase Materials
,”
J. Comput. Phys.
,
346
, pp.
242
261
.
9.
Arbogast
,
T.
,
Pencheva
,
G.
,
Wheeler
,
M. F.
, and
Yotov
,
I.
,
2007
, “
A Multiscale Mortar Mixed Finite Element Method
,”
Multiscale Model. Simul.
,
6
(
1
), pp.
319
346
.
10.
Ganis
,
B.
, and
Yotov
,
I.
,
2009
, “
Implementation of a Mortar Mixed Finite Element Method Using a Multiscale Flux Basis
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
49–52
), pp.
3989
3998
.
11.
Engquist
,
E. W. B.
and
Bjorn
,
E.
,
2003
, “
The Heterognous Multiscale Methods
,”
Commun. Math. Sci.
,
1
(
1
), pp.
87
132
.
12.
Abdulle
,
A.
, and
Vanden-Eijnden
,
E.
,
2012
, “
The Heterogeneous Multiscale Method
,”
Acta Numer.
,
21
, pp.
1
87
.
13.
Hughes
,
T. J.
,
Mazzei
,
L.
, and
Jansen
,
K. E.
,
2000
, “
Large Eddy Simulation and the Variational Multiscale Method
,”
Comput. Vis. Sci.
,
3
(
1–2
), pp.
47
59
.
14.
Hughes
,
T. J.
,
Oberai
,
A. A.
, and
Mazzei
,
L.
,
2001
, “
Large Eddy Simulation of Turbulent Channel Flows by the Variational Multiscale Method
,”
Phys. Fluids
,
13
(
6
), pp.
1784
1799
.
15.
Bazilevs
,
Y.
, and
Akkerman
,
I.
,
2010
, “
Large Eddy Simulation of Turbulent Taylor–Couette Flow Using Isogeometric Analysis and the Residual-Based Variational Multiscale Method
,”
J. Comput. Phys.
,
229
(
9
), pp.
3402
3414
.
16.
Miller
,
R. E.
, and
Tadmor
,
E. B.
,
2009
, “
A Unified Framework and Performance Benchmark of Fourteen Multiscale Atomistic/Continuum Coupling Methods
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
5
), p.
053001
.
17.
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2003
, “
Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition
,”
J. Comput. Phys.
,
190
(
1
), pp.
249
274
.
18.
Curtin
,
W. A.
, and
Miller
,
R. E.
,
2003
, “
Atomistic/Continuum Coupling in Computational Materials Science
,”
Modell. Simul. Mater. Sci. Eng.
,
11
(
3
), p.
R33
.
19.
Risken
,
H.
,
1989
,
The Fokker Planck Equation, Methods of Solution and Application
, 2nd ed.,
Springer Verlag
,
Berlin
.
20.
Frank
,
T. D.
,
2005
,
Nonlinear Fokker–Planck Equations: Fundamentals and Applications
,
Springer Science & Business Media
,
Berlin, Germany
.
21.
Honisch
,
C.
, and
Friedrich
,
R.
,
2011
, “
Estimation of Kramers–Moyal Coefficients at Low Sampling Rates
,”
Phys. Rev. E
,
83
(
6
), p.
066701
.
22.
Tabar
,
M. R. R.
,
2019
,
The Langevin Equation and Wiener Process
,
Springer International Publishing
,
Cham
, pp.
39
48
.
23.
Renner
,
C.
,
Peinke
,
J.
, and
Friedrich
,
R.
,
2001
, “
Experimental Indications for Markov Properties of Small-Scale Turbulence
,”
J. Fluid Mech.
,
433
, pp.
383
409
.
24.
Siefert
,
M.
,
Kittel
,
A.
,
Friedrich
,
R.
, and
Peinke
,
J.
,
2003
, “
On a Quantitative Method to Analyze Dynamical and Measurement Noise
,”
Europhys. Lett.
,
61
(
4
), p.
466
.
25.
Gottschall
,
J.
, and
Peinke
,
J.
,
2008
, “
On the Definition and Handling of Different Drift and Diffusion Estimates
,”
New J. Phys.
,
10
(
8
), p.
083034
.
26.
Friedrich
,
R.
,
Siegert
,
S.
,
Peinke
,
J.
,
Siefert
,
M.
,
Lindemann
,
M.
,
Raethjen
,
J.
,
Deuschl
,
G.
, et al.,
2000
, “
Extracting Model Equations From Experimental Data
,”
Phys. Lett. A
,
271
(
3
), pp.
217
222
.
27.
Kleinhans
,
D.
,
Friedrich
,
R.
,
Nawroth
,
A.
, and
Peinke
,
J.
,
2005
, “
An Iterative Procedure for the Estimation of Drift and Diffusion Coefficients of Langevin Processes
,”
Phys. Lett. A
,
346
(
1–3
), pp.
42
46
.
28.
Gradišek
,
J.
,
Grabec
,
I.
,
Siegert
,
S.
, and
Friedrich
,
R.
,
2002
, “
Qualitative and Quantitative Analysis of Stochastic Processes Based on Measured Data, I: Theory and Applications to Synthetic Data
,”
J. Sound Vib.
,
252
(
3
), pp.
545
562
.
29.
Gradišek
,
J.
,
Govekar
,
E.
, and
Grabec
,
I.
,
2002
, “
Qualitative and Quantitative Analysis of Stochastic Processes Based on Measured Data, II: Applications to Experimental Data
,”
J. Sound Vib.
,
252
(
3
), pp.
563
572
.
30.
Sura
,
P.
, and
Gille
,
S. T.
,
2003
, “
Interpreting Wind-Driven Southern Ocean Variability in a Stochastic Framework
,”
J. Mar. Res.
,
61
(
3
), pp.
313
334
.
31.
Gille
,
S. T.
,
2005
, “
Statistical Characterization of Zonal and Meridional Ocean Wind Stress
,”
J. Atmos. Ocean. Technol.
,
22
(
9
), pp.
1353
1372
.
32.
Friedrich
,
R.
,
Peinke
,
J.
,
Sahimi
,
M.
, and
Tabar
,
M. R. R.
,
2011
, “
Approaching Complexity by Stochastic Methods: From Biological Systems to Turbulence
,”
Phys. Rep.
,
506
(
5
), pp.
87
162
.
33.
Giuggioli
,
L.
,
McKetterick
,
T. J.
,
Kenkre
,
V.
, and
Chase
,
M.
,
2016
, “
Fokker–Planck Description for a Linear Delayed Langevin Equation With Additive Gaussian Noise
,”
J. Phys. A: Math. Theor.
,
49
(
38
), p.
384002
.
34.
Giuggioli
,
L.
, and
Neu
,
Z.
,
2019
, “
Fokker–Planck Representations of Non-Markov Langevin Equations: Application to Delayed Systems
,”
Philos. Trans. R. Soc. A
,
377
(
2153
), p.
20180131
.
35.
Pesce
,
G.
,
McDaniel
,
A.
,
Hottovy
,
S.
,
Wehr
,
J.
, and
Volpe
,
G.
,
2013
, “
Stratonovich-to-Itô Transition in Noisy Systems With Multiplicative Feedback
,”
Nat. Commun.
,
4
(
1
), pp.
1
7
.
36.
Lin
,
W.-T.
, and
Ho
,
C.-L.
,
2012
, “
Similarity Solutions of the Fokker–Planck Equation With Time-Dependent Coefficients
,”
Ann. Phys.
,
327
(
2
), pp.
386
397
.
37.
Pichler
,
L.
,
Masud
,
A.
, and
Bergman
,
L. A.
,
2013
, “Numerical Solution of the Fokker–Planck Equation by Finite Difference and Finite Element Methods—A Comparative Study,”
Computational Methods in Stochastic Dynamics
,
M.
Papadrakakis
,
G.
Stefanou
, and
V.
Papadopoulos
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
69
85
.
38.
Kumar
,
P.
, and
Narayanan
,
S.
,
2006
, “
Solution of Fokker–Planck Equation by Finite Element and Finite Difference Methods for Nonlinear Systems
,”
Sadhana
,
31
(
4
), pp.
445
461
.
39.
Gaidai
,
O.
,
Dou
,
P.
,
Naess
,
A.
,
Dimentberg
,
M.
,
Cheng
,
Y.
, and
Ye
,
R.
,
2019
, “
Nonlinear 6D Response Statistics of a Rotating Shaft Subjected to Colored Noise by Path Integration on GPU
,”
Int. J. Non-Linear Mech.
,
111
, pp.
142
148
.
40.
Mousavi
,
S.
,
Reihani
,
S.
,
Anvari
,
G.
,
Anvari
,
M.
,
Alinezhad
,
H.
, and
Tabar
,
M.
,
2017
, “
Stochastic Analysis of Time Series for the Spatial Positions of Particles Trapped in Optical Tweezers
,”
Sci. Rep.
,
7
(
1
), pp.
1
11
.
41.
Anvari
,
M.
,
Tabar
,
M.
,
Peinke
,
J.
, and
Lehnertz
,
K.
,
2016
, “
Disentangling the Stochastic Behavior of Complex Time Series
,”
Sci. Rep.
,
6
(
1
), pp.
1
12
.
42.
Casella
,
G.
, and
Berger
,
R. L.
,
2002
,
Statistical Inference
, Vol.
2
,
Duxbury Pacific Grove
,
Pacific Grove, CA
.
43.
Siegert
,
S.
,
Friedrich
,
R.
, and
Peinke
,
J.
,
1998
, “
Analysis of Data Sets of Stochastic Systems
,”
Phy. Lett. A
,
243
(
5–6
), pp.
275
280
.
44.
Sura
,
P.
, and
Barsugli
,
J.
,
2002
, “
A Note on Estimating Drift and Diffusion Parameters From Timeseries
,”
Phys. Lett. A
,
305
(
5
), pp.
304
311
.
45.
Ragwitz
,
M.
, and
Kantz
,
H.
,
2001
, “
Indispensable Finite Time Corrections for Fokker–Planck Equations From Time Series Data
,”
Phys. Rev. Lett.
,
87
(
25
), p.
254501
.
46.
Friedrich
,
R.
,
Renner
,
C.
,
Siefert
,
M.
, and
Peinke
,
J.
,
2002
, “
Comment on “Indispensable Finite Time Corrections for Fokker–Planck Equations From Time Series Data”
,”
Phys. Rev. Lett.
,
89
(
14
), p.
149401
.
47.
Rachev
,
S. T.
,
Klebanov
,
L. B.
,
Stoyanov
,
S. V.
, and
Fabozzi
,
F. J.
,
2013
, “Probability Distances and Probability Metrics: Definitions,”
The Methods of Distances in the Theory of Probability and Statistics
,
S. T.
RachevLev
,
B.
Klebanov
,
S. V.
Stoyanov
, and
F.
Fabozzi
, eds.,
Springer
, pp.
11
31
.
48.
Stickel
,
J. J.
,
2010
, “
Data Smoothing and Numerical Differentiation by a Regularization Method
,”
Comput. Chem. Eng.
,
34
(
4
), pp.
467
475
.
49.
Hassan
,
H.
,
Mohamad
,
A.
, and
Atteia
,
G.
,
2012
, “
An Algorithm for the Finite Difference Approximation of Derivatives With Arbitrary Degree and Order of Accuracy
,”
J. Comput. Appl. Math.
,
236
(
10
), pp.
2622
2631
.
50.
Wojtkiewicz
,
S.
, and
Bergman
,
L.
,
2000
, “
Numerical Solution of High Dimensional Fokker–Planck Equations
,”
8th ASCE Specialty Conference on Probablistic Mechanics and Structural Reliability
,
Notre Dame, IN
, pp.
1
6
.
51.
Homer
,
E. R.
,
Tikare
,
V.
, and
Holm
,
E. A.
,
2013
, “
Hybrid Potts-Phase Field Model for Coupled Microstructural–Compositional Evolution
,”
Comput. Mater. Sci.
,
69
, pp.
414
423
.
52.
Plimpton
,
S.
,
Thompson
,
A.
, and
Slepoy
,
A.
,
2012
, “
SPPARKS Kinetic Monte Carlo Simulator
,” Albuquerque, NM
53.
Voter
,
A. F.
,
2007
, “Introduction to the Kinetic Monte Carlo Method,”
Radiation Effects in Solids
,
K. E.
Sickafus
,
E. A.
Kotomin
, and
B. P.
Uberuaga
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
1
23
.
54.
Bowman
,
A. W.
, and
Azzalini
,
A.
,
1997
,
Applied Smoothing Techniques for Data Analysis: The Kernel Approach With S-Plus Illustrations
, Vol.
18
,
OUP
,
Oxford
.
55.
Gaston
,
D.
,
Newman
,
C.
,
Hansen
,
G.
, and
Lebrun-Grandie
,
D.
,
2009
, “
MOOSE: A Parallel Computational Framework for Coupled Systems of Nonlinear Equations
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1768
1778
.
56.
Bostanabad
,
R.
,
Zhang
,
Y.
,
Li
,
X.
,
Kearney
,
T.
,
Brinson
,
L. C.
,
Apley
,
D. W.
,
Liu
,
W. K.
, and
Chen
,
W.
,
2018
, “
Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-Art Techniques
,”
Prog. Mater. Sci.
,
95
, pp.
1
41
.
57.
Tran
,
A.
,
McCann
,
S.
,
Furlan
,
J. M.
,
Pagalthivarthi
,
K. V.
,
Visintainer
,
R. J.
,
Wildey
,
T.
, and
Eldred
,
M.
,
2022
, “
aphBO-2GP-3B: A Budgeted Asynchronous-Parallel Multi-Acquisition for Constrained Bayesian Optimization on High-Performing Computing Architecture
,”
Struc. Multidisc. Optim.
,
65
(
4
) pp.
1
45
.
58.
Tran
,
A.
,
Wildey
,
T.
, and
McCann
,
S.
,
2020
, “
sMF-BO-2CoGP: A Sequential Multi-Fidelity Constrained Bayesian Optimization for Design Applications
,”
J. Comput. Inf. Sci. Eng.
,
20
(
3
), pp.
1
15
.
59.
Tran
,
A.
,
Sun
,
J.
,
Furlan
,
J. M.
,
Pagalthivarthi
,
K. V.
,
Visintainer
,
R. J.
, and
Wang
,
Y.
,
2019
, “
pBO-2GP-3B: A Batch Parallel Known/Unknown Constrained Bayesian Optimization With Feasibility Classification and Its Applications in Computational Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
827
852
.
60.
Tran
,
A.
,
Tran
,
M.
, and
Wang
,
Y.
,
2019
, “
Constrained Mixed-Integer Gaussian Mixture Bayesian Optimization and Its Applications in Designing Fractal and Auxetic Metamaterials
,”
Struct. Multidiscipl. Optim.
,
59
(
6
), pp.
2131
2154
.
61.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
62.
McGaughey
,
A.
, and
Kaviany
,
M.
,
2004
, “
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part I. Lennard–Jones Argon
,”
Int. J. Heat Mass Transfer
,
47
(
8
), pp.
1783
1798
.
63.
Borgelt
,
P.
,
Hoheisel
,
C.
, and
Stell
,
G.
,
1990
, “
Exact Molecular Dynamics and Kinetic Theory Results for Thermal Transport Coefficients of the Lennard–Jones Argon Fluid in a Wide Region of States
,”
Phys. Rev. A
,
42
(
2
), p.
789
.
64.
Dawid
,
A.
, and
Gburski
,
Z.
,
1997
, “
Interaction-Induced Light Scattering in Lennard–Jones Argon Clusters: Computer Simulations
,”
Phys. Rev. A
,
56
(
4
), p.
3294
.
65.
Laasonen
,
K.
,
Wonczak
,
S.
,
Strey
,
R.
, and
Laaksonen
,
A.
,
2000
, “
Molecular Dynamics Simulations of Gas–Liquid Nucleation of Lennard–Jones Fluid
,”
J. Chem. Phys.
,
113
(
21
), pp.
9741
9747
.
66.
Reith
,
D.
, and
Müller-Plathe
,
F.
,
2000
, “
On the Nature of Thermal Diffusion in Binary Lennard–Jones Liquids
,”
J. Chem. Phys.
,
112
(
5
), pp.
2436
2443
.
67.
Griebel
,
M.
,
Knapek
,
S.
, and
Zumbusch
,
G.
,
2007
,
Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications
, Vol. 5,
Springer Science & Business Media
,
Berlin, Germany
.
68.
Dünweg
,
B.
, and
Paul
,
W.
,
1991
, “
Brownian Dynamics Simulations Without Gaussian Random Numbers
,”
Int. J. Mod. Phys. C
,
2
(
03
), pp.
817
827
.
69.
Heroux
,
M. A.
,
Bartlett
,
R. A.
,
Howle
,
V. E.
,
Hoekstra
,
R. J.
,
Hu
,
J. J.
,
Kolda
,
T. G.
,
Lehoucq
,
R. B.
, et al.,
2005
, “
An Overview of the Trilinos Project
,”
ACM Trans. Math. Softw.
,
31
(
3
), pp.
397
423
.
70.
Heroux
,
M. A.
, and
Willenbring
,
J. M.
,
2012
, “
A New Overview of the Trilinos Project
,”
Sci. Program.
,
20
(
2
), pp.
83
88
.
71.
Balay
,
S.
,
Gropp
,
W. D.
,
McInnes
,
L. C.
, and
Smith
,
B. F.
,
1997
, “Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries,”
Modern Software Tools for Scientific Computing
,
Springer
, pp.
163
202
.
72.
Abhyankar
,
S.
,
Brown
,
J.
,
Constantinescu
,
E. M.
,
Ghosh
,
D.
,
Smith
,
B. F.
, and
Zhang
,
H.
,
2018
, “
PETSc/TS: A Modern Scalable ODE/DAE Solver Library
,” arXiv preprint arXiv:1806.01437.
73.
Torquato
,
S.
,
2002
, “
Statistical Description of Microstructures
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
77
111
.
74.
Groeber
,
M.
,
Ghosh
,
S.
,
Uchic
,
M. D.
, and
Dimiduk
,
D. M.
,
2008
, “
A Framework for Automated Analysis and Simulation of 3D Polycrystalline Microstructures. Part 1: Statistical Characterization
,”
Acta Mater.
,
56
(
6
), pp.
1257
1273
.
75.
Groeber
,
M.
,
Ghosh
,
S.
,
Uchic
,
M. D.
, and
Dimiduk
,
D. M.
,
2008
, “
A Framework for Automated Analysis and Simulation of 3D Polycrystalline Microstructures. Part 2: Synthetic Structure Generation
,”
Acta Mater.
,
56
(
6
), pp.
1274
1287
.
76.
Liu
,
Y.
,
Greene
,
M. S.
,
Chen
,
W.
,
Dikin
,
D. A.
, and
Liu
,
W. K.
,
2013
, “
Computational Microstructure Characterization and Reconstruction for Stochastic Multiscale Material Design
,”
Comput. Aided Des.
,
45
(
1
), pp.
65
76
.
77.
Wayman
,
C.
,
1971
, “
Solid-State Phase Transformations
,”
Annu. Rev. Mater. Sci.
,
1
(
1
), pp.
185
218
.
78.
Ng
,
F. S.
,
2016
, “
Statistical Mechanics of Normal Grain Growth in One Dimension: A Partial Integro-Differential Equation Model
,”
Acta Mater.
,
120
(
1
), pp.
453
462
.
79.
Tateno
,
M.
, and
Tanaka
,
H.
,
2021
, “
Power-Law Coarsening in Network-Forming Phase Separation Governed by Mechanical Relaxation
,”
Nat. Commun.
,
12
(
1
), pp.
1
12
.
80.
Bullerjahn
,
J. T.
,
von Bülow
,
S.
, and
Hummer
,
G.
,
2020
, “
Optimal Estimates of Self-Diffusion Coefficients From Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
153
(
2
), p.
024116
.
You do not currently have access to this content.