In Part I of this paper, the coupling between the modeling and controller-design problems was quantified in terms of the size of the set of models from which satisfactory controllers may be derived. Herein, the significance of this coupling in controller design is exploited in the formulation of a simultaneous approach to modeling and controller design. The goal is to minimize the worst-case control effort subject to constraints on worst-case performance. It is proven that, by allowing the controller-design model and the controller to vary simultaneously, this approach yields a potential reduction in the control effort required to satisfy the prescribed performance goals in comparison to the traditional sequential approach. Two simple examples illustrating the benefits of this approach are also presented.

1.
Ackermann
J.
,
1980
, “
Parameter Space Design of Robust Control Systems
,”
IEEE Transactions on Automatic Control
, Vol.
AC–25
, No.
6
, pp.
1058
1072
.
2.
Ackermann, J., 1981, “Robust Flight Control System Design,” Proceedings of the IFAC Control Science and Technology 8th Triennial World Congress, Kyoto, Japan, pp. 1177–1182.
3.
Ackermann, J., 1985, “Multi-Model Approaches to Robust Control Systems Design,” Model Error Concepts and Compensation, Proceedings of the IFAC Workshop, Boston, MA, pp. 1–6.
4.
Becker
R. G.
,
Heunis
A. J.
, and
Mayne
D. Q.
,
1979
, “
Computer-aided design of control systems via optimisation
,”
Proceedings of the Institution of Electrical Engineers
, Vol.
126
, No.
6
, pp.
573
578
.
5.
Boyd, S. P., and Barratt, C. H., 1991, Linear Controller Design: Limits of Performance, Prentice-Hall, Englewood Cliffs, NJ.
6.
Boyd
S. P.
,
Balakrishnan
V.
,
Barratt
C. H.
,
Khraishi
N. M.
,
Li
X.
,
Meyer
D. G.
, and
Norman
S. A.
,
1988
, “
A New CAD Method and Associated Architectures for Linear Controllers
,”
IEEE Transactions on Automatic Control
, Vol.
33
, No.
3
, pp.
268
282
.
7.
Brusher, G. A., 1993, Coupling Between the Modeling and Controller-Design Problems, Ph.D, Dissertation, Dept. of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI
8.
Brusher, G. A., Kabamba, P. T., and A. G. Ulsoy, 1996, “Coupling Between the Modeling and Vontroller-Design Problems, Part I: Analysis,” ASME JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT, AND CONTROL (in press).
9.
Chiang, R. Y., and Safonov, M. G., 1992, Robust Control Toolbox User’s Guide, The Mathworks, Inc., Natick, MA.
10.
Doyle
J. C.
,
1982
, “
Analysis of Feedback Systems with Structured Uncertainties
,”
IEE Proceedings, Part D
, Vol.
129
, No.
6
, pp.
242
250
.
11.
Doyle, J. C., 1985, “Structured Uncertainty in Control System Design,” Proceedings of the 24th Conference on Decision and Control, Ft. Lauderdale, FL, pp. 260–265.
12.
Doyle, J. C., Francis, B. A., and Tannenbaum, A. R., 1992, Feedback Control of Theory, MacMillan Publishing Company, New York.
13.
Doyle, J. C., Wall, J. E., and Stein, G., 1982, “Performance and Robustness Analysis for Structured Uncertainty,” Proceedings of the 21st Conference on Decision and Control, Orlando, FL, pp. 629–636.
14.
El Ghaoui
L.
,
Carrier
A.
, and
Bryson
A. E.
,
1992
, “
Linear Quadratic Minimax Controllers
,”
Journal of Guidance, Control and Dynamics
, Vol.
15
, No.
4
, pp.
953
961
.
15.
Franklin, G. F., Powell, J. D., and Emami-Naeini, A., 1986, Feedback Control of Dynamic Systems, Addison-Wesley, Menlo Park, CA.
16.
Hsieh
C.
,
Skelton
R. E.
, and
Damra
F. M.
,
1989
, “
Minimum Energy Controllers with Inequality Constraints on Output Variances
,”
Optimal Control Applications & Methods
, Vol.
10
, No.
4
, pp.
347
366
.
17.
Kaminer, I., and Khargonekar, P. P., 1991, “Robust Stability Analysis with Structured Norm Bounded Unstable Uncertainty,” Proceedings of the American Control Conference, Boston, MA, pp. 2700–2701.
18.
Khargonekar
P. P.
, and
Rotea
M. A.
,
1991
, “
Multiple Objective Optimal Control of Linear Systems: The Quadratic Norm Case
,”
IEEE Transactions on Automatic Control
, Vol.
AC–36
, No.
1
, pp.
14
24
.
19.
Kreisselmeier
G.
, and
Steinhauser
R.
,
1983
, “
Application of Vector Performance Optimization to a Robust Control Loop Design for a Fighter Aircraft
,”
International Journal of Control
, Vol.
37
, pp.
251
284
.
20.
Lau, M. K., Boyd, S., Kosut, R. L., and Franklin, G. F., 1991a, “A Robust Control Design for FIR Plants with Parameter Set Uncertainty,” Proceedings of the American Control Conference, Boston, MA, pp. 83–88.
21.
Lau, M. K., Boyd, S., Kosut, R. L., and Franklin, G. F., 1991b, “Robust Control Design for Ellipsoidal Plant Set,” Proceedings of the 30th Conference on Decision and Control, Brighton, England, pp. 291–296.
22.
Liu, K., and Skelton, R. E., 1991, “Model Tuning for Controller Design, Proceedings of the ASME Winter Annual Meeting, DSC-Vol. 34: Automated Modeling, Atlanta, GA, pp. 1–8.
23.
Looze
D. P.
,
1983
, “
A Dual Optimization Procedure for Linear Quadratic Robust Control Problems
,”
Automatica
, Vol.
19
, No.
3
, pp.
299
302
.
24.
Maciejowski, J. M., 1989, Multivariable Feedback Design, Addison-Wesley, New York.
25.
Mills
R. A.
, and
Bryson
A. E.
,
1992
, “
Parameter-Robust Control Design Using a Minimax Method
,”
Journal of Guidance, Control and Dynamics
, Vol.
15
, No.
5
, pp.
1068
1075
.
26.
Miyazawa
Y.
,
1992
, “
Robust Flight Control System Design with Multiple Model Approach
,”
Journal of Guidance, Control and Dynamics
, Vol.
15
, No.
3
, pp.
785
788
.
27.
Polak
E.
,
1987
, “
On the Mathematical Foundations of Nondifferentiable Optimization in Engineering Design
,”
SIAM Review
, Vol.
29
, No.
1
, pp.
21
89
.
28.
Polak
E.
,
Mayne
D. Q.
, and
Stimler
D. M.
,
1984
, “
Control System Design Via Semi-Infinite Optimization: A Review
,”
Proceedings of the IEEE
, Vol.
72
, No.
12
, pp.
1777
1794
.
29.
Salmon
D. W.
,
1968
, “
Minimax Controller Design
,”
IEEE Transactions on Automatic Control
, Vol.
AC–13
, No.
4
, pp.
369
376
.
30.
Skelton
R. E.
,
1980
, “
Application of Disturbance-Accommodating Control in the Model Error Problem
,”
Journal of Interdisciplinary Modeling and Simulation
, Vol.
3
, No.
1
, pp.
47
62
.
31.
Skelton, R. E., 1985, “On the Structure of Modeling Errors and the Inseparability of the Modeling and Control Problems,” IFAC Model Error Concepts & Compensation, pp. 13–20.
32.
Skelton, R. E., 1988, Dynamic Systems Control: Linear Systems Analysis and Synthesis, Wiley, New York.
33.
Skelton
R. E.
, and
Yousuff
A.
,
1983
, “
Component Cost Analysis of Large Scale Systems
,”
International Journal of Control
, Vol.
37
, No.
2
, pp.
285
304
.
34.
Vidyasagar, M., 1985, Control System Synthesis; A Factorization Approach, The MIT Press, Cambridge, MA.
35.
Zhu
G.
, and
Skelton
R.
,
1991
, “
Mixed L2 and L problems by weight selection in quadratic optimal control
,”
International Journal of Control
, Vol.
53
, No.
5
, pp.
1161
1176
.
This content is only available via PDF.
You do not currently have access to this content.