A new model reduction technique for linear time-invariant systems is proposed. A new method that reduces the order of large-scale systems by integrating singular perturbation with specified frequency domain balanced structure is proposed. Considering a frequency range at which the system actually operates guarantees a good approximation of the original full order model. Simulation experiments for model reduction of several large-scale systems demonstrate the effectiveness of the proposed technique.

1.
Liu
,
Y.
, and
Anderson
,
B. D. O.
, 1989, “
Singular Perturbation Approximation of Balanced Systems
,”
Int. J. Control
0020-7179,
40
, pp.
1379
1405
.
2.
Aghaee
,
P. K.
,
Zilouchian
,
A.
,
Nike-Ravesh
,
S.
, and
Zadegan
,
A.
, 2003, “
Principle of Frequency-Domain Balanced Structure in Linear Systems and Model Reduction
,”
Comput. Electr. Eng.
0045-7906,
29
, pp.
463
477
.
3.
Moore
,
B.
, 1981, “
Principle Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
20
, pp.
17
31
.
4.
Enns
,
D. F.
, 1984, “
Model Reduction for Control System Design
,” Ph.D. thesis, Stanford University, San Francisco, CA.
5.
Wang
,
D.
, and
Zilouchian
,
A.
, 2000, “
Model Reduction of Discrete Linear Systems via Frequency-Domain Balanced Structure
,”
IEEE Trans. Circuits Syst.
0098-4094,
47
, pp.
830
837
.
6.
Al-Saggaf
,
U. M.
, 1986, “
On Model Reduction and Control of Discrete Time Systems
,” Ph.D. thesis, Stanford University, San Francisco, CA.
7.
Anderson
,
B. D. O.
, and
Liu
,
Y.
, 1989, “
Controller Reduction: Concepts and Approaches
,”
IEEE Trans. Autom. Control
0018-9286,
34
, pp.
802
812
.
8.
Amano
,
R.
,
Horiguchi
,
K.
,
Nishimura
,
T.
, and
Nagata
,
A.
, 1999, “
Frequency-Weighted Model Reduction via Interpolation
,”
Electr. Eng. Jpn.
0424-7760,
117
, pp.
1472
1478
.
9.
Leland
,
R.
, 1999, “
Reduced-Order Models and Controllers for Continuous-Time Stochastic Systems: An Information Theory Approach
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
1714
1719
.
10.
Varga
,
A.
, 2000, “
Balanced Truncation Model Reduction of Periodic Systems
,”
Proc. IEEE Int. Symp. Computer Aided Contr. Sys. Design
,
Anchorage
, Alaska, pp.
249
254
.
11.
Obinata
,
G.
, and
Anderson
,
B. D. O.
, 2001,
Model Reduction for Control System Design
,
Springer
, Berlin.
12.
Varga
,
A.
, and
Anderson
,
B. D. O.
, 2001, “
Accuracy Enhancing Methods for Frequency-Weighted Balancing Related Model Reduction
,”
Proc. Conf. Dec. Contr.
,
Orlando
, FL, pp.
3659
3664
.
13.
Varga
,
A.
, and
Anderson
,
B. D. O.
, 2002, “
Frequency-Weighted Balancing Related Controller Reduction
,”
Proc. IFAC Congress
,
Barcelona
, Spain.
14.
Steel
,
J. H.
, “
Approximation and Validation of Models with Uncertainty: A Closed-Loop Perspective
,” Ph.D. thesis, University of Cambridge, UK.
15.
Jamshidi
,
M.
, 1983,
Large-Scale Systems: Modeling and Control
,
Elsevier
, North-Holland, New York.
16.
Kailath
,
T.
, 1980,
Linear Systems
,
Prentice–Hall
, Englewood Cliffs, NJ.
17.
Chen
,
C. T.
, 1999,
Linear System Theory and Design
,
Oxford
, New York.
18.
Ham
,
F. M.
, and
Kostanic
,
I.
, 2001,
Principles of Neurocomputing for Science & Engineering
,
McGraw–Hill
, New York.
19.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
, 2002,
Feedback Control of Dynamic Systems
,
Prentice–Hall
, Englewood Cliffs, NJ.
20.
Little
,
J. N.
, and
Laub
,
A. J.
, 1995,
Control System Toolbox: User’s Guide
,
The Mathworks
, Sherborne, MA.
21.
Gupta
,
N. K.
, 1980, “
Frequency-Shaped Cost Functional: Extension of Linear Quadratic Gaussian Design Methods
,”
J. Guid. Control
0162-3192,
3
, pp.
529
535
.
22.
Zhou
,
K.
, and
Doyle
,
J.
, 1998,
Essentials of Robust Control
,
Prentice–Hall
, Englewood Cliffs, NJ.
23.
Feldmann
,
P.
, and
Freund
,
R. W.
, 1995, “
Efficient Linear Circuit Analysis by Pade Approximation via the Lanczos Process
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
14
, pp.
639
649
.
24.
Prakash
,
R.
, and
Rao
,
S. V.
, 1989, “
Model Reduction by Low Frequency Approximation of Internally Balanced Representation
,”
IEEE Proc. of the 28th Conf. on Dec. and Contr.
, pp.
2425
2430
.
25.
Sreeram
,
V.
, and
Agathoklis
,
P.
, 1989, “
Model Reduction of Linear Discrete Systems via Weighted Impulse Response Gramians
,”
IEEE Proc. of the 28th Conf. on Dec. and Contr.
, pp.
2431
2435
.
You do not currently have access to this content.