This paper presents a repeatable control scheme for redundant manipulators. It is developed in terms of physically meaningful variables, a concept closely related to integrability and homogeneity. This approach sheds a different light on some well-known phenomena related to redundant manipulator control. The control is developed by determining enough physically meaningful variables to describe the manipulator’s motions in the task and nullspaces, in a manner that allows them to be controlled independently. These variables are then used to develop physically meaningful controller error signals. As a consequence, all configurations in the workspace are repeatable, except for those at, or very close, to a kinematic singularity. The approach is illustrated on a 6DOF planar manipulator.

1.
Klein
,
C. A.
, and
Huang
,
C. -H.
, 1983, “
Review of Pseudoinverse Control for Use With Kinematically Redundant Manipulators
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
SMC-13
(
3
), pp.
245
250
.
2.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
, 1994, “
Singularities, Stable Surfaces, and the Repeatable Behavior of Kinematically Redundant Manipulators
,”
Int. J. Robot. Res.
0278-3649,
13
(
1
), pp.
70
81
.
3.
Baruh
,
H.
, 1999,
Analytical Dynamics
, 1st ed.,
WCB/McGraw-Hill
,
USA
.
4.
Baillieul
,
J.
, 1985, “
Kinematic Programming Alternatives for Redundant Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, pp.
722
728
.
5.
O’Neil
,
K. A.
,
Chen
,
Y.-C.
, and
Seng
,
J.
, 1998, “
On the Existence and Characteristics of Solution Paths at Algorithmic Singularities
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
2
), pp.
336
342
.
6.
Nenchev
,
D. N.
, 1989, “
Redundancy Resolution Through Local Optimization: A Review
,”
J. Rob. Syst.
0741-2223,
6
(
6
), pp.
769
798
.
7.
Siciliano
,
B.
, 1990, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Robotic Syst.
0921-0296,
3
, pp.
201
212
.
8.
Khatib
,
O.
, 1995, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Robot. Res.
0278-3649,
14
(
1
), pp.
19
36
.
9.
Ma
,
S.
, 1997, “
Local Torque Minimization of Redundant Manipulators Considering End-Motion Joint Velocities
,”
Int. J. Rob. Autom.
0826-8185,
12
(
2
), pp.
65
70
.
10.
Bowling
,
A.
, and
Khatib
,
O.
, 2008, “
Dynamic Performance and Modular Design of Redundant Macro/Mini Manipulators
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
092301
.
11.
Liégeois
,
A.
, 1977, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
SMC-7
(
12
), pp.
868
871
.
12.
Shamir
,
T.
, 1990, “
Remarks on Some Dynamical Problems of Controlling Redundant Manipulators
,”
IEEE Trans. Autom. Control
0018-9286,
35
(
3
), pp.
341
344
.
13.
Kim
,
K. -K.
, and
Yoon
,
Y. -S.
, 1992, “
Trajectory Planning of Redundant Robots by Maximizing the Moving Acceleration Radius
,”
Robotica
0263-5747,
10
, pp.
195
203
.
14.
Choi
,
S. I.
, and
Kim
,
B. K.
, 2000, “
Obstacle Avoidance Control for Redundant Manipulators Using Collidability Measure
,”
Robotica
0263-5747,
18
(
2
), pp.
143
151
.
15.
Kemény
,
Z.
, 2003, “
Redundancy Resolution in Robots Using Parameterization Through Null Space
,”
IEEE Trans. Ind. Electron.
0278-0046,
50
(
4
), pp.
777
783
.
16.
Benhabib
,
B.
,
Goldenberg
,
A. A.
, and
Fenton
,
R. G.
, 1985, “
Solution to the Inverse Kinematics of Redundant Manipulators
,”
J. Rob. Syst.
0741-2223,
2
(
4
), pp.
373
385
.
17.
Chevallereau
,
C.
, and
Khalil
,
W.
, 1987, “
Efficient Method for the Calculation of the Pseudoinverse Kinematic Problem
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, pp.
1842
1848
.
18.
Pin
,
F. G.
,
Belmans
,
P. F. R.
,
Culioli
,
J. -C.
,
Carlson
,
D. D.
, and
Tulloch
,
F. A.
, 1994, “
A New Solution Method for the Inverse Kinematic Joint Velocity Calculations of Redundant Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, Vol.
1
.
19.
Pin
,
F. G.
, and
Tulloch
,
F. A.
, 1996, “
Resolving Kinematic Redundancy With Constraints Using the FSP (Full Space Parameterization) Approach
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, Vol.
2
.
20.
Shamir
,
T.
, and
Yomdin
,
Y.
, 1988, “
Repeatability of Redundant Manipulators: Mathematical Solution of the Problem
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
11
), pp.
1004
1009
.
21.
Seraji
,
H.
, 1991, “
Task Options for Redundancy Resolution Using Configuration Control
,”
Proceedings of the IEEE Conference on Decision and Control (CDC)
, pp.
2793
2798
.
22.
Chang
,
P. -H.
,
Park
,
K. C.
, and
Lee
,
S.
, 2000, “
An Extension to Operational Space for Kinematically Redundant Manipulators: Kinematics and Dynamics
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
5
), pp.
592
596
.
23.
Maciejewski
,
A. A.
, and
Klein
,
C. A.
, 1985, “
Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments
,”
Int. J. Robot. Res.
0278-3649,
4
(
3
), pp.
109
117
.
24.
Egeland
,
O.
, 1987, “
Task-Space Tracking With Redundant Manipulators
,”
Int. J. Robot. Res.
0278-3649,
RA-3
(
5
), pp.
471
475
.
25.
Zhang
,
Y.
,
Ge
,
S. S.
, and
Lee
,
T. H.
, 2004, “
A Unified Quadratic-Programming-Based Dynamical System Approach to Joint Torque Optimization of Physically Constrained Redundant Manipulators
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
34
(
5
), pp.
2126
2132
.
26.
Zhang
,
Y.
, and
Ma
,
S.
, 2007, “
Minimum-Energy Redundancy Resolution of Robot Manipulators Unified by Quadratic Programming and Its Online Solution
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA)
, Harbin, China, Aug., pp.
3232
3237
.
27.
Baillieul
,
J.
,
Hollerbach
,
J.
, and
Brockett
,
R.
, 1984, “
Programming and Control of Kinematically Redundant Manipulators
,”
Proceedings of the IEEE Conference on Decision and Control (CDC)
, Vol.
2
, pp.
768
774
.
28.
Hollerbach
,
J.
, and
Suh
,
K. C.
, 1985, “
Redundancy Resolution of Manipulators Through Torque Optimization
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, pp.
1016
1021
.
29.
O’Neil
,
K. A.
, 2002, “
Divergence of Linear Acceleration-Based Redundancy Resolution Schemes
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
4
), pp.
625
631
.
30.
Park
,
J.
,
Chung
,
W. -K.
, and
Youm
,
Y.
, 2002, “
Characterization of Instability of Dynamic Control for Kinematically Redundant Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, Vol.
3
, pp.
2400
2405
.
31.
Wang
,
J. T.
, 1995, “
Redundancy Resolution of Robotic Manipulators Using Normalized Generalized Inverses
,”
ASME J. Mech. Des.
0161-8458,
117
(
3
), pp.
454
459
.
32.
Ma
,
S.
, and
Nenchev
,
D. N.
, 1996, “
Local Torque Minimization for Redundant Manipulators: A Correct Formulation
,”
Robotica
0263-5747,
14
(
2
), pp.
235
239
.
33.
Ben-Israel
,
A.
, and
Greville
,
T. N. E.
, 1974,
Generalized Inverses: Theory and Applications
,
Wiley
,
New York
.
34.
Strang
,
G.
, 1988,
Linear Algebra and Its Applications
, 3rd ed.,
Harcourt Brace Jovanovich
,
San Diego, CA
.
35.
Craig
,
J. J.
, 1989,
Introduction to Robotics: Mechanics and Control
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
36.
Qu
,
Z.
,
Dorsey
,
J. F.
,
Zhang
,
X.
, and
Dawson
,
D. M.
, 1991, “
Robust Control of Robots by the Computed Torque Law
,”
Syst. Control Lett.
0167-6911,
16
(
1
), pp.
25
32
.
37.
Klein
,
C.
, and
Kee
,
K.
, 1989, “
Nature of Drift in Pseudoinverse Control of Kinematically Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
(
2
), pp.
231
234
.
38.
De Luca
,
A.
,
Lanari
,
L.
, and
Oriolo
,
G.
, 1992, “
Control of Redundant Robots on Cyclic Trajectories
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, May, Vol.
1
, pp.
500
506
.
39.
De Luca
,
A.
, and
Oriolo
,
G.
, 1997, “
Nonholonomic Behavior in Redundant Robots Under Kinematic Control
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
5
), pp.
776
782
.
40.
Schaufler
,
R.
,
Fedrowitz
,
C. H.
, and
Kammüller
,
R.
, 2000, “
A Simplified Criterion for Repeatability and Its Application in Constraint Path Planning Problems
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Vol.
3
.
41.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
, 1993, “
Repeatable Generalized Inverse Control Strategies for Kinematically Redundant Manipulators
,”
IEEE Trans. Autom. Control
0018-9286,
38
(
5
), pp.
689
699
.
42.
Luo
,
S.
, and
Ahmad
,
S.
, 1992, “
Predicting the Drift Motion for Kinematically Redundant Robots
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
22
(
4
), pp.
717
728
.
43.
Klein
,
C. A.
, and
Shamim
,
A.
, 1995, “
Repeatable Pseudoinverse Control for Planar Kinematically Redundant Manipulators
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
25
(
12
), pp.
1657
1662
.
44.
Bay
,
J. S.
, 1992, “
Geometry and Prediction of Drift-Free Trajectories for Redundant Machines Under Pseudoinverse Control
,”
Int. J. Robot. Res.
0278-3649,
11
(
1
), pp.
41
52
.
45.
Mukherjee
,
R.
, 1995, “
Design of Holonomic Loops for Repeatability in Redundant Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, Nagoya, Japan, Vol.
3
, pp.
2785
2790
.
46.
Yan
,
Y.
,
Ohnishi
,
K.
, and
Fukuda
,
T.
, 1999, “
Decentralized Control of Redundant Manipulators: A Control Scheme That Generates a Cyclic Solution to the Inverse Problem
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
, Atlanta, GA, Sept., pp.
404
409
.
47.
Wang
,
C.
, and
Kumar
,
V.
, 1995, “
The Performance of a Repeatable Control Scheme for Redundant Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, Vol.
1
, pp.
1154
1159
.
48.
Wang
,
C.-C.
, and
Kumar
,
V.
, 2001, “
On Singular Behaviors of Impedance-Based Repeatable Control of Redundant Robots
,”
J. Rob. Syst.
0741-2223,
18
(
4
), pp.
171
186
.
49.
Li
,
L.
,
Liu
,
Z.
,
Zhang
,
D.
, and
Zhang
,
H.
, 2006, “
Controlling Chaotic Robots With Kinematical Redundancy
,”
Chaos
1054-1500,
16
(
1
), p.
013132
.
50.
Michellod
,
Y.
,
Mullhaupt
,
P.
, and
Gillet
,
D.
, 2008, “
On Achieving Periodic Joint Motion for Redundant Robots
,”
Proceedings of the 17th International Federation of Automatic Control World Congress
, Seoul, Korea.
You do not currently have access to this content.