This paper considers the problem of semiglobal stabilization by output feedback for a class of generalized multi-input and multi-output uncertain nonlinear systems. Due to the presence of mismatched uncertainties and the lack of triangularity condition, the systems under consideration are not uniformly completely observable. Combining the output feedback domination approach and block-backstepping scheme together, a series of linear output feedback controllers are constructed recursively for each subsystems and the closed-loop system is rendered semiglobally asymptotically stable.
References
1.
Mazenc
, F.
, Praly
, L.
, and Dayawansa
, W. P.
, 1994, “Global Stabilization by Output Feedback: Examples and Counterexamples
,” Syst. Control Lett.
, 23
(2
), pp. 119
–125
.2.
Besancon
, G.
, 1998, “State Affine Systems and Obsever Based Control
,” NOLCOS
, 2
, pp. 399
–404
.3.
Krener
, A. J.
, and Isidori
, A.
, 1983, “Linearization by Output Injection and Nonlinear Observers
,” Syst. Control Lett.
, 3
(1
), pp. 47
–52
.4.
Krener
, A. J.
, and Respondek
, W.
, 1985, “Nonlinear Observers With Linearizable Error Dynamics
,” SIAM J. Control Optim.
, 23
(2
), pp. 197
–216
.5.
Marino
, R.
, and Tomei
, P.
, 1995, Nonlinear Control Design: Geometric, Adaptive, and Robust
, Prentice Hall International
, UK
.6.
Qian
, C.
, and Lin
, W.
, 2002, “Output Feedback Control of a Class of Nonlinear Systems: A Nonseparation Principle Paradigm
,” IEEE Trans. Autom. Control
, 47
(10
), pp. 1710
–1715
.7.
Esfandiari
, F.
, and Khalil
, H.
, 1992, “Output Feedback Stabilization of Fully Linearizable Systems
,” Int. J. Control
, 56
, pp. 1007
–1037
.8.
Isidori
, A.
, 1995, “Nonlinear control systems
,” Communications and Control Engineering Series
, 3rd ed., Springer-Verlag
, Berlin
.9.
Khalil
, H.
, and Esfandiari
, F.
, 1993, “Semi-Global Stabilization of a Class of Nonlinear Systems Using Output Feedback
,” IEEE Trans. Autom. Control
, 38
(9
), pp. 1412
–1415
.10.
Lin
, Z.
, and Saberi
, A.
, 1995, “Robust Semiglobal Stabilization of Minimum-Phase Input-Output Linearizable Systems via Partial State and Output Feedback
,” IEEE Trans. Autom. Control
, 40
(6
), pp. 1029
–1041
.11.
Shen
, Y.
, Shen
, W.
, Jiang
, M.
, and Huang
, Y.
, 2010, “Semi-Global Finite-Time Observers for Multi-Output Nonlinear Systems
,” Int. J. Robust Nonlinear Control
, 20
, pp. 789
–801
.12.
Yousef
, H.
, Hamdyb
, M.
, Madbouly
, E.
, and Eteim
, D.
, 2009, “Adaptive Fuzzy Decentralized Control for Interconnected Mimo Nonlinear Subsystems
,” Automatica
, 45
(2
), pp. 456
–462
.13.
Teel
, A.
, and Praly
, L.
, 1994, “Global Stabilization and Observability Imply Semi-Global Stabilization by Output Feedback
,” Syst. Control Lett.
, 22
, pp. 313
–325
.14.
Battilotti
, S.
, 1999, “Semi-Global Stabilization via Measurement Feedback for Systems in Triangular Form
,” Proceedings of the IEEE Conference Decision and Control
, pp. 837
–841
.15.
Qian
, C.
, 2005, “Semi-Global Stabilization of a Class of Uncertain Nonlinear Systems by Linear Output Feedback
,” IEEE Trans. Circuits Syst., II: Express Briefs
, 52
(4
), pp. 218
–222
.16.
Shim
, H.
, Son
, Y. I.
, and Seo
, J. H.
, 2001, “Semi-Global Observer for Multi-Output Nonlinear Systems
,” Syst. Control Lett.
, 42
(3
), pp. 233
–244
.17.
Lin
, W.
, and Qian
, C.
, 2001, “Semi-Global Robust Stabilization of MIMO Nonlinear Systems by Partial State and Dynamic Output Feedback
,” Automatica
, 37
(7
), pp. 1093
–1101
.18.
Yang
, B.
, and Lin
, W.
, 2006, “On Semi-Global Stabilizability of MIMO Nonlinear Systems by Output Feedback
,” Automatica
, 42
(6
), pp. 1049
–1054
.19.
Teel
, A.
, and Praly
, L.
, 1995, “Tools for Semi-Global Stabilization by Partial State and Output Feedback
,” SIAM J. Control Optim.
, 33
(5
), pp. 1443
–1488
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.