This paper considers the problem of semiglobal stabilization by output feedback for a class of generalized multi-input and multi-output uncertain nonlinear systems. Due to the presence of mismatched uncertainties and the lack of triangularity condition, the systems under consideration are not uniformly completely observable. Combining the output feedback domination approach and block-backstepping scheme together, a series of linear output feedback controllers are constructed recursively for each subsystems and the closed-loop system is rendered semiglobally asymptotically stable.

References

1.
Mazenc
,
F.
,
Praly
,
L.
, and
Dayawansa
,
W. P.
, 1994, “
Global Stabilization by Output Feedback: Examples and Counterexamples
,”
Syst. Control Lett.
,
23
(
2
), pp.
119
125
.
2.
Besancon
,
G.
, 1998, “
State Affine Systems and Obsever Based Control
,”
NOLCOS
,
2
, pp.
399
404
.
3.
Krener
,
A. J.
, and
Isidori
,
A.
, 1983, “
Linearization by Output Injection and Nonlinear Observers
,”
Syst. Control Lett.
,
3
(
1
), pp.
47
52
.
4.
Krener
,
A. J.
, and
Respondek
,
W.
, 1985, “
Nonlinear Observers With Linearizable Error Dynamics
,”
SIAM J. Control Optim.
,
23
(
2
), pp.
197
216
.
5.
Marino
,
R.
, and
Tomei
,
P.
, 1995,
Nonlinear Control Design: Geometric, Adaptive, and Robust
,
Prentice Hall International
,
UK
.
6.
Qian
,
C.
, and
Lin
,
W.
, 2002, “
Output Feedback Control of a Class of Nonlinear Systems: A Nonseparation Principle Paradigm
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1710
1715
.
7.
Esfandiari
,
F.
, and
Khalil
,
H.
, 1992, “
Output Feedback Stabilization of Fully Linearizable Systems
,”
Int. J. Control
,
56
, pp.
1007
1037
.
8.
Isidori
,
A.
, 1995, “
Nonlinear control systems
,”
Communications and Control Engineering Series
, 3rd ed.,
Springer-Verlag
,
Berlin
.
9.
Khalil
,
H.
, and
Esfandiari
,
F.
, 1993, “
Semi-Global Stabilization of a Class of Nonlinear Systems Using Output Feedback
,”
IEEE Trans. Autom. Control
,
38
(
9
), pp.
1412
1415
.
10.
Lin
,
Z.
, and
Saberi
,
A.
, 1995, “
Robust Semiglobal Stabilization of Minimum-Phase Input-Output Linearizable Systems via Partial State and Output Feedback
,”
IEEE Trans. Autom. Control
,
40
(
6
), pp.
1029
1041
.
11.
Shen
,
Y.
,
Shen
,
W.
,
Jiang
,
M.
, and
Huang
,
Y.
, 2010, “
Semi-Global Finite-Time Observers for Multi-Output Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
20
, pp.
789
801
.
12.
Yousef
,
H.
,
Hamdyb
,
M.
,
Madbouly
,
E.
, and
Eteim
,
D.
, 2009, “
Adaptive Fuzzy Decentralized Control for Interconnected Mimo Nonlinear Subsystems
,”
Automatica
,
45
(
2
), pp.
456
462
.
13.
Teel
,
A.
, and
Praly
,
L.
, 1994, “
Global Stabilization and Observability Imply Semi-Global Stabilization by Output Feedback
,”
Syst. Control Lett.
,
22
, pp.
313
325
.
14.
Battilotti
,
S.
, 1999, “
Semi-Global Stabilization via Measurement Feedback for Systems in Triangular Form
,”
Proceedings of the IEEE Conference Decision and Control
, pp.
837
841
.
15.
Qian
,
C.
, 2005, “
Semi-Global Stabilization of a Class of Uncertain Nonlinear Systems by Linear Output Feedback
,”
IEEE Trans. Circuits Syst., II: Express Briefs
,
52
(
4
), pp.
218
222
.
16.
Shim
,
H.
,
Son
,
Y. I.
, and
Seo
,
J. H.
, 2001, “
Semi-Global Observer for Multi-Output Nonlinear Systems
,”
Syst. Control Lett.
,
42
(
3
), pp.
233
244
.
17.
Lin
,
W.
, and
Qian
,
C.
, 2001, “
Semi-Global Robust Stabilization of MIMO Nonlinear Systems by Partial State and Dynamic Output Feedback
,”
Automatica
,
37
(
7
), pp.
1093
1101
.
18.
Yang
,
B.
, and
Lin
,
W.
, 2006, “
On Semi-Global Stabilizability of MIMO Nonlinear Systems by Output Feedback
,”
Automatica
,
42
(
6
), pp.
1049
1054
.
19.
Teel
,
A.
, and
Praly
,
L.
, 1995, “
Tools for Semi-Global Stabilization by Partial State and Output Feedback
,”
SIAM J. Control Optim.
,
33
(
5
), pp.
1443
1488
.
You do not currently have access to this content.