The viscoelastic damper is one of the most promising devices for vibration mitigation. In order to reduce dynamic responses of iced transmission lines due to strong wind, a new kind of viscoelastic antigalloping device (VEAGD) is developed. Experimental and theoretical studies indicate that the device has fine energy dissipation capacity and high damping characteristic. Then, the motion equations of the iced quad-bundle transmission lines incorporated with VEAGDs are established by employing Lagrange equation based on the assumed mode method. At the same time, the parameters and positions of the VEAGDs are determined optimally by the genetic algorithm. Numerical analysis results show that VEAGDs have excellent antigalloping effect, and the dynamic responses of the transmission lines with optimally designed VEAGDs are mitigated more effectively.

References

1.
Nakamura
,
Y.
,
1980
, “
Galloping of Bundled Power Line Conductors
,”
J. Sound Vib.
,
73
(
3
), pp.
363
377
.10.1016/0022-460X(80)90521-0
2.
Yu
,
P.
,
Desai
,
Y.
,
Shah
,
A.
, and
Popplewell
,
N.
,
1993
, “
Three-Degree-of-Freedom Model for Galloping. Part I: Formulation
,”
J. Eng. Mech.
,
119
(
12
), pp.
2404
2425
.10.1061/(ASCE)0733-9399(1993)119:12(2404)
3.
Yu
,
P.
,
Desai
,
Y.
,
Popplewell
,
N.
, and
Shah
,
A.
,
1993
, “
Three-Degree-of-Freedom Model for Galloping. Part II: Solutions
,”
J. Eng. Mech.
,
119
(
12
), pp.
2426
2448
.10.1061/(ASCE)0733-9399(1993)119:12(2426)
4.
Luongo
,
A.
,
Zulli
,
D.
, and
Piccardo
,
G.
,
2008
, “
Analytical and Numerical Approaches to Nonlinear Galloping of Internally Resonant Suspended Cables
,”
J. Sound Vib.
,
315
(
3
), pp.
375
393
.10.1016/j.jsv.2008.03.067
5.
Yan
,
Z.
,
Yan
,
Z.
,
Li
,
Z.
, and
Tan
,
T.
,
2012
, “
Nonlinear Galloping of Internally Resonant Iced Transmission Lines Considering Eccentricity
,”
J. Sound Vib.
,
331
(
15
), pp.
3599
3616
.10.1016/j.jsv.2012.03.011
6.
Desai
,
Y.
,
Yu
,
P.
,
Popplewell
,
N.
, and
Shah
,
A.
,
1995
, “
Finite Element Modelling of Transmission Line Galloping
,”
Comput. Struct.
,
57
(
3
), pp.
407
420
.10.1016/0045-7949(94)00630-L
7.
Zhang
,
Q.
,
Popplewell
,
N.
, and
Shah
,
A.
,
2000
, “
Galloping of Bundle Conductor
,”
J. Sound Vib.
,
234
(
1
), pp.
115
134
.10.1006/jsvi.1999.2858
8.
Fu
,
G.
,
Wang
,
L.
,
Guan
,
Z.
,
Hou
,
L.
,
Meng
,
X.
, and
Macalpine
,
M.
,
2012
, “
Simulations of the Controlling Effect of Interphase Spacers on Conductor Galloping
,”
IEEE Trans. Dielectr. Electr. Insul.
,
19
(
4
), pp.
1325
1334
.10.1109/TDEI.2012.6260008
9.
Akagi
,
Y.
,
Koyama
,
S.
,
Ohta
,
H.
,
Nishizawa
,
H.
,
Nagata
,
Y.
, and
Oka
,
T.
,
2002
, “
Development of Anti-Galloping Device for UHV Transmission Line
,”
Proceedings of the Transmission and Distribution Conference and Exhibition
, Asia Pacific, IEEE/PES, IEEE, pp.
2158
2161
.
10.
Carreira
,
A.
,
2008
, “
Controlling Conductor Motion With Interphase Spacers in Regions of Contamination
,”
IEEE Electr. Insul. Mag.
,
24
(
6
), pp.
35
42
.10.1109/MEI.2008.4665349
11.
Nojima
,
T.
,
Shimizu
,
M.
,
Ogi
,
I.
,
Okumura
,
T.
,
Nagatomi
,
K.
, and
Ito
,
H.
,
1997
, “
Development of Galloping Endurance Design for Extra Large 6-Conductor Bundle Spacers by the Experience of the Full Scale 500 kV Test Line
,”
IEEE Trans. Power Delivery
,
12
(
4
), pp.
1824
1829
.10.1109/61.634212
12.
Keutgen
,
R.
, and
Lilien
,
J. L.
,
1998
, “
A New Damper to Solve Galloping on Bundled Lines. Theoretical Background, Laboratory and Field Results
,”
IEEE Trans. Power Delivery
,
13
(
1
), pp.
260
265
.10.1109/61.660887
13.
Min
,
K. W.
,
Kim
,
J.
, and
Lee
,
S. H.
,
2004
, “
Vibration Tests of 5-Storey Steel Frame With Viscoelastic Dampers
,”
Eng. Struct.
,
26
(
6
), pp.
831
839
.10.1016/j.engstruct.2004.02.004
14.
Xu
,
Z.-D.
,
2007
, “
Earthquake Mitigation Study on Viscoelastic Dampers for Reinforced Concrete Structures
,”
J. Vib. Control
,
13
(
1
), pp.
29
43
.10.1177/1077546306068058
15.
Xu
,
Z. D.
,
Wang
,
D. X.
, and
Shi
,
C. F.
,
2011
, “
Model, Tests and Application Design for Viscoelastic Dampers
,”
J. Vib. Control
,
17
(
9
), pp.
1359
1370
.10.1177/1077546310373617
16.
Xu
,
Z. D.
,
Huang
,
X. H.
, and
Lu
,
L. H.
,
2012
, “
Experimental Study on Horizontal Performance of Multi-Dimensional Earthquake Isolation and Mitigation Devices for Long-Span Reticulated Structures
,”
J. Vib. Control
,
18
(
7
), pp.
941
952
.10.1177/1077546311418868
17.
Lewandowski
,
R.
, and
Pawlak
,
Z.
,
2011
, “
Dynamic Analysis of Frames With Viscoelastic Dampers Modelled by Rheological Models With Fractional Derivatives
,”
J. Sound Vib.
,
330
(
5
), pp.
923
936
.10.1016/j.jsv.2010.09.017
18.
Lewandowski
,
R.
, and
Chorążyczewski
,
B.
,
2010
, “
Identification of the Parameters of the Kelvin–Voigt and the Maxwell Fractional Models, Used to Modeling of Viscoelastic Dampers
,”
Comput. Struct.
,
88
(
1
), pp.
1
17
.10.1016/j.compstruc.2009.09.001
19.
Volokh
,
K. Y.
,
Vilnay
,
O.
, and
Averbuh
,
I.
,
2003
, “
Dynamics of Cable Structures
,”
J. Eng. Mech.
,
129
(
2
), pp.
175
180
.10.1061/(ASCE)0733-9399(2003)129:2(175)
20.
Lu
,
M.
,
Popplewell
,
N.
,
Shah
,
A.
, and
Chan
,
J.
,
2004
, “
Nutation Damper Undergoing a Coupled Motion
,”
J. Vib. Control
,
10
(
9
), pp.
1313
1334
.10.1177/1077546304042045
You do not currently have access to this content.