Abstract

Trackability is a known system property and has been studied extensively in the literature both from a theoretical standpoint and from the standpoint of constructing inversion-based tracking controllers. There is also a significant body of literature on closely related ideas focusing on existence of tracking control inputs but using varied terminology and tools. In this paper, we start with the existence question, given an linear time-invariant (LTI) discrete-time system, when does there exists control inputs to enable the system to track arbitrary reference commands. We adopt an algebraic approach that then allows us to define the sets of all trackable output reference commands and untrackable output reference commands, and subsequently permitting us to determine conditions for existence of a right inverse of the system based on these sets and a simple rank test. These results permit us to then gain insights into tracking behavior of systems that are not trackable. We discuss in some detail the relationship of these rank tests with other results in the literature. We also define three indices that indicate the expected tracking behavior of any given system (whether trackable or not). Furthermore, we also present a Venn diagram explaining in detail the connections between trackability and other fundamental system properties like controllability, observability and output controllability, while discussing several facts that elaborate these connections. The presented work is expected to provide a framework for receiving new theoretical insights on the topic of tracking control and trackability.

References

1.
Kreindler
,
E.
, and
Sarachik
,
P.
,
1964
, “
On the Concepts of Controllability and Observability of Linear Systems
,”
IEEE Trans. Autom. Control
,
9
(
2
), pp.
129
136
.10.1109/TAC.1964.1105665
2.
Brockett
,
R. W.
, and
Mesarović
,
M.
,
1965
, “
The Reproducibility of Multivariable Systems
,”
J. Math. Anal. Appl.
,
11
, pp.
548
563
.10.1016/0022-247X(65)90104-6
3.
Dorato
,
P.
,
1969
, “
On the Inverse of Linear Dynamical Systems
,”
IEEE Trans. Syst. Sci. Cybern.
,
5
(
1
), pp.
43
48
.10.1109/TSSC.1969.300243
4.
Sain
,
M.
, and
Massey
,
J.
,
1969
, “
Invertibility of Linear Time-Invariant Dynamical Systems
,”
IEEE Trans. Autom. Control
,
14
(
2
), pp.
141
149
.10.1109/TAC.1969.1099133
5.
Albrecht
,
F.
,
Grasse
,
K. A.
, and
Wax
,
N.
,
1981
, “
Reproducibility of Linear and Nonlinear Input-Output Systems
,”
J. Math. Anal. Appl.
,
79
(
1
), pp.
178
202
.10.1016/0022-247X(81)90017-2
6.
Brockett
,
R. W.
,
2015
,
Finite Dimensional Linear Systems
,
Siam
, Philadelphia, PA.
7.
Kurek
,
J.
,
2002
, “
Trackability and Bounded Output Bounded Input Trackability of Linear Discrete-Time Systems
,”
Control Cybern.
,
31
(
1
), pp.
43
55
.http://control.ibspan.waw.pl:3000/contents/export?filename=2002-1-04_kurek.pdf
8.
García-Planas
,
M. I.
, and
Domínguez-García
,
J. L.
,
2013
, “
Alternative Tests for Functional and Pointwise Output-Controllability of Linear Time-Invariant Systems
,”
Syst. Control Lett.
,
62
(
5
), pp.
382
387
.10.1016/j.sysconle.2013.02.003
9.
García Planas
,
M. I.
, and
Tarragona
,
S.
,
2013
, “
Testing Functional Output-Controllability of Time-Invariant Singular Linear Systems
,”
Cybern. Phys.
,
2
(
2
), pp.
97
101
.http://lib.physcon.ru/doc?id=c75d2465fb33
10.
Maas
,
W.
, and
Nijmeijer
,
H.
,
1994
, “
Dynamic Path Controllability in Economic Models
,”
J. Econ. Dyn. Control
,
18
(
3–4
), pp.
781
805
.10.1016/0165-1889(94)90031-0
11.
Wohltmann
,
H.-W.
,
1985
, “
Target Path Controllability of Linear Time-Varying Dynamical Systems
,”
IEEE Trans. Autom. Control
,
30
(
1
), pp.
84
87
.10.1109/TAC.1985.1103790
12.
Engwerda
,
J. C.
,
1988
, “
Control Aspects of Linear Discrete Time-Varying Systems
,”
Int. J. Control
,
48
(
4
), pp.
1631
1658
.10.1080/00207178808906273
13.
Germani
,
A.
, and
Monaco
,
S.
,
1983
, “
Functional Output ϵ-Controllability for Linear Systems on Hilbert Spaces
,”
Syst. Control Lett.
,
2
(
5
), pp.
313
320
.10.1016/S0167-6911(83)80009-7
14.
Aoki
,
M.
,
1975
, “
On a Generalization of Tinbergen's Condition in the Theory of Policy to Dynamic Models
,”
Rev. Econ. Stud.
,
42
(
2
), pp.
293
296
.10.2307/2296537
15.
Nijmeijer
,
H.
,
1986
, “
Right-Invertibility for a Class of Nonlinear Control Systems: A Geometric Approach
,”
Syst. Control Lett.
,
7
(
2
), pp.
125
132
.10.1016/0167-6911(86)90018-6
16.
Sandoz
,
E. E.
,
Kokotovic
,
P. V.
, and
Hespanha
,
J. P.
,
2008
, “
Trackability Filtering for Underactuated Systems
,”
American Control Conference, IEEE
, Seattle, WA, June 11–13, pp.
1758
1763
.10.1109/ACC.2008.4586746
17.
Devasia
,
S.
, and
Paden
,
B.
,
1998
, “
Stable Inversion for Nonlinear Nonminimum-Phase Time-Varying Systems
,”
IEEE Trans. Autom. Control
,
43
(
2
), pp.
283
288
.10.1109/9.661082
18.
Zou
,
Q.
, and
Devasia
,
S.
,
1999
, “
Preview-Based Stable-Inversion for Output Tracking of Linear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
4
), pp.
625
630
.10.1115/1.2802526
19.
Devasia
,
S.
,
Chen
,
D.
, and
Paden
,
B.
,
1996
, “
Nonlinear Inversion-Based Output Tracking
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
930
942
.10.1109/9.508898
20.
George
,
K.
,
Verhaegen
,
M.
, and
Scherpen
,
J. M.
,
1999
, “
Stable Inversion of Mimo Linear Discrete Time Nonminimum Phase Systems
,”
Proceedings of Seventh Mediterranean Conference Control Automation
, Haifa, Israel, pp.
267
281
.
21.
Leang
,
K. K.
,
Zou
,
Q.
, and
Devasia
,
S.
,
2009
, “
Feedforward Control of Piezoactuators in Atomic Force Microscope Systems
,”
IEEE Control Syst.
,
29
(
1
), pp.
70
82
.10.1109/MCS.2008.930922
22.
Clayton
,
G. M.
,
Tien
,
S.
,
Leang
,
K. K.
,
Zou
,
Q.
, and
Devasia
,
S.
,
2009
, “
A Review of Feedforward Control Approaches in Nanopositioning for High-Speed Spm
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
6
), p.
061101
.10.1115/1.4000158
23.
van Zundert
,
J.
, and
Oomen
,
T.
,
2018
, “
On Inversion-Based Approaches for Feedforward and ILC
,”
Mechatronics
,
50
, pp.
282
291
.10.1016/j.mechatronics.2017.09.010
24.
Perdon
,
A. M.
,
Conte
,
G.
, and
Zattoni
,
E.
,
2016
, “
Necessary and Sufficient Conditions for Asymptotic Model Matching of Switching Linear Systems
,”
Automatica
,
64
, pp.
294
304
.10.1016/j.automatica.2015.11.017
25.
Kučera
,
V.
, and
Toledo
,
E. C.
,
2014
, “
A Review of Stable Exact Model Matching by State Feedback
,”
22nd Mediterranean Conference on Control and Automation
,
IEEE
, Palermo, Italy, June 16–19, pp.
85
90
.10.1109/MED.2014.6961331
26.
Kučera
,
V.
,
2015
, “
Model Matching by Non-Regular Static State Feedback
,” American Control Conference (
ACC
),
IEEE
, Chicago, IL, July 1–3, pp.
3528
3533
.10.1109/ACC.2015.7171877
27.
Kučera
,
V.
,
2017
, “
Model Matching by Dynamic State Feedback
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
3045
3050
.10.1016/j.ifacol.2017.08.673
28.
Commault
,
C.
,
Lafay
,
J. F.
, and
Malabre
,
M.
,
1991
, “
Structure of Linear Systems: Geometric and Transfer Matrix Approaches
,”
Kybernetika
,
27
(
3
), pp.
170
185
.
29.
Morgan
,
B.
,
1964
, “
The Synthesis of Linear Multivariable Systems by State-Variable Feedback
,”
IEEE Trans. Autom. Control
,
9
(
4
), pp.
405
411
.10.1109/TAC.1964.1105733
30.
Gilbert
,
E. G.
,
1969
, “
The Decoupling of Multivariable Systems by State Feedback
,”
SIAM J. Control
,
7
(
1
), pp.
50
63
.10.1137/0307004
31.
Falb
,
P.
, and
Wolovich
,
W.
,
1967
, “
Decoupling in the Design and Synthesis of Multivariable Control Systems
,”
IEEE Trans. Autom. Control
,
12
(
6
), pp.
651
659
.10.1109/TAC.1967.1098737
32.
Wonham
,
W. M.
, and
Morse
,
A. S.
,
1970
, “
Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach
,”
SIAM J. Control
,
8
(
1
), pp.
1
18
.10.1137/0308001
33.
Kučera
,
V.
,
2017
, “
Diagonal Decoupling of Linear Systems by Static-State Feedback
,”
IEEE Trans. Autom. Control
,
62
(
12
), pp.
6250
6265
.10.1109/TAC.2017.2710098
34.
Kucera
,
V.
,
2021
, “
Decoupling With Stability of Linear Systems by Static-State Feedback
,”
IEEE Trans. Autom. Control
,
66
(
10
), pp.
4684
4699
.10.1109/TAC.2020.3031008
35.
Warren
,
M.
, and
Mitter
,
S.
,
1975
, “
Generic Solvability of Morgan's Problem
,”
IEEE Trans. Autom. Control
,
20
(
2
), pp.
268
269
.10.1109/TAC.1975.1100945
36.
Koussic-Uris
,
T. G.
,
1979
, “
A Frequency Domain Approach to the Block Decoupling Problem i. the Solvability of the Block Decoupling Problem by State Feedback and a Constant Non-Singular Input Transformation
,”
Int. J. Control
,
29
(
6
), pp.
991
1010
.10.1080/00207177908922745
37.
Hautus
,
M.
, and
Heymann
,
M.
,
1983
, “
Linear Feedback Decoupling–Transfer Function Analysis
,”
IEEE Trans. Autom. Control
,
28
(
8
), pp.
823
832
.10.1109/TAC.1983.1103320
38.
Vafiadis
,
D.
, and
Karcanias
,
N.
,
1997
, “
Decoupling and Pole Assignment of Singular Systems: A Frequency Domain Approach
,”
Automatica
,
33
(
8
), pp.
1555
1560
.10.1016/S0005-1098(97)81033-3
39.
Kučera
,
V.
,
2011
, “
Decoupling Optimal Controllers
,”
Proceedings of 18th International Conference Process Control
, Tatranská Lomnica, Slovakia, pp.
400
407
.
40.
Bittanti
,
S.
,
Colaneri
,
P.
, and
Mongiovi
,
M.
,
1994
, “
The Spectral Interactor Matrix for the Singular Riccati Equation
,”
Proceedings of 33rd IEEE Conference on Decision and Control
, Vol.
3
,
IEEE
, Lake Buena Vista, FL, Dec. 14–16, pp.
2165
2169
.10.1109/CDC.1994.411409
41.
Kase
,
W.
,
Mutoh
,
Y.
, and
Teranishi
,
M.
,
1999
, “
A Simple Derivation of Interactor Matrix and Its Applications
,”
Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304)
, Vol.
1
,
IEEE
, Phoenix, AZ, Dec. 7–10, pp.
493
498
.10.1109/CDC.1999.832827
42.
Ntogramatzidis
,
L.
, and
Prattichizzo
,
D.
,
2007
, “
Squaring Down LTI Systems: A Geometric Approach
,”
Syst. Control Letters
,
56
(
3
), pp.
236
244
.10.1016/j.sysconle.2006.10.004
43.
Tokarzewski
,
J.
,
2002
, “
A General Solution to the Output-Zeroing Problem for Mimo LTI Systems
,”
Int. J. Appl. Math. Comput. Sci.
,
12
, pp.
161
171
.https://eudml.org/doc/207576
44.
Kadam
,
S. D.
, and
Palanthandalam-Madapusi
,
H. J.
,
2017
, “
Revisiting Trackability for Linear Time-Invariant Systems
,” American Control Conference (
ACC
),
IEEE
, Seattle, WA, May 24–26, pp.
1728
1733
.10.23919/ACC.2017.7963202
45.
Mueller
,
M.
,
2009
, “
Normal Form for Linear Systems With Respect to Its Vector Relative Degree
,”
Linear Algebra Appl.
,
430
(
4
), pp.
1292
1312
.10.1016/j.laa.2008.10.014
46.
Palanthandalam-Madapusi
,
H. J.
, and
Bernstein
,
D. S.
,
2009
, “
A Subspace Algorithm for Simultaneous Identification and Input Reconstruction
,”
Int. J. Adap. Control Signal Process.
,
23
(
12
), pp.
1053
1069
.10.1002/acs.1057
47.
Bernstein
,
D.
,
2009
,
Matrix Mathematics: Theory, Facts, and Formulas
, 2nd ed.,
Princeton University Press
,
Princeton, NJ
.
48.
Chavan
,
R. A.
,
Rajiv
,
A.
, and
Palanthandalam-Madapusi
,
H. J.
,
2015
, “
Command Following Using an Input Reconstruction Approach
,”
American Control Conference (ACC)
,
IEEE
, Chicago, IL, July 1–3, pp.
3175
3180
.10.1109/ACC.2015.7171821
49.
Zou
,
Q.
, and
Devasia
,
S.
,
1999
, “
Preview-Based Stable-Inversion for Output Tracking
,”
Proceedings of the American Control Conference
, Vol.
5
,
IEEE
, San Diego, CA, pp.
3544
3548
.
50.
Kadam
,
S. D.
,
Rao
,
A.
,
Prusty
,
B.
, and
Palanthandalam-Madapusi
,
H. J.
,
2020
, “
Selective Tracking Using Linear Trackability Analysis and Inversion-Based Tracking Control
,”
American Control Conference (ACC)
,
IEEE
, Denver, CO, pp.
5346
5351
.
51.
Bristol
,
E.
,
1966
, “
On a New Measure of Interaction for Multivariable Process Control
,”
IEEE Trans. Autom. Control
,
11
(
1
), pp.
133
134
.10.1109/TAC.1966.1098266
52.
Lipták
,
B.
,
2013
,
Process Control: Instrument Engineers' Handbook
,
Elsevier Science
, Butterworth-Heinemann, Oxford, UK.
53.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control: Analysis and Design
,
Wiley
, New York.
54.
Chang
,
J.-W.
, and
Yu
,
C.-C.
,
1990
, “
The Relative Gain for Non-Square Multivariable Systems
,”
Chem. Eng. Sci.
,
45
(
5
), pp.
1309
1323
.10.1016/0009-2509(90)87123-A
55.
Palanthandalam-Madapusi
,
H. J.
, and
Bernstein
,
D. S.
,
2007
, “
Unbiased Minimum-Variance Filtering for Input Reconstruction
,”
American Control Conference
, New York, pp.
5712
5717
.
56.
Marro
,
G.
,
Prattichizzo
,
D.
, and
Zattoni
,
E.
,
2002
, “
Convolution Profiles for Right Inversion of Multivariable Non-Minimum Phase Discrete-Time Systems
,”
Automatica
,
38
(
10
), pp.
1695
1703
.10.1016/S0005-1098(02)00088-2
57.
Basile
,
G.
, and
Marro
,
G.
,
1992
,
Controlled and Conditioned Invariants in Linear System Theory
,
Prentice Hall, Englewood Cliffs
,
NJ
.
58.
Kovalev
,
A.
,
1998
, “
Criteria for the Functional Controllability and Invertibility of Non-Linear Systems
,”
J. Appl. Math. Mech.
,
62
(
1
), pp.
103
113
.10.1016/S0021-8928(98)00012-4
59.
Tinbergen
,
J.
,
1952
,
On the Theory of Economic Policy
,
Contributions to Economic Analysis
,
North-Holland, Publishing Company, Amsterdam, The Netherlands
.
60.
Banerjee
,
S.
, and
Roy
,
A.
,
2014
,
Linear Algebra and Matrix Analysis for Statistics
,
Chapman & Hall/CRC Texts in Statistical Science, CRC Press
, Boca Raton, FL.
61.
Gentle
,
J.
,
2007
,
Matrix Algebra: Theory, Computations, and Applications in Statistics
,
Springer Texts in Statistics, Springer
,
New York
.
You do not currently have access to this content.