Abstract

To identify the underlying mechanisms of human motor control, parametric models are utilized. One approach of employing these models is the inferring the control intent (estimating motor control strategy). A well-accepted assumption is that human motor control is optimal; thus, the intent is inferred by solving an inverse optimal control (IOC) problem. Linear quadratic regulator (LQR) is a well-established optimal controller, and its inverse LQR (ILQR) problem has been used in the literature to infer the control intent of one subject. This implementation used a cost function with gain penalty, minimizing the error between LQR gain and a preliminary estimated gain. We hypothesize that relying on an estimated gain may limit ILQR optimization capability. In this study, we derive an ILQR optimization with output penalty, minimizing the error between the model output and the measured output. We conducted the test on 30 healthy subjects who sat on a robotic seat capable of rotation. The task utilized a physical human–robot interaction with a perturbation torque as input and lower and upper body angles as output. Our method significantly improved the goodness of fit compared to the gain-penalty ILQR. Moreover, the dominant inferred intent was not statistically different between the two methods. To our knowledge, this work is the first that infers motor control intent for a sample of healthy subjects. This is a step closer to investigating control intent differences between healthy subjects and subjects with altered motor control, e.g., low back pain.

References

1.
Peng
,
G. C.
,
Hain
,
T. C.
, and
Peterson
,
B. W.
,
1996
, “
A Dynamical Model for Reflex Activated Head Movements in the Horizontal Plane
,”
Biol. Cybern.
,
75
(
4
), pp.
309
319
.10.1007/s004220050297
2.
Goodworth
,
A. D.
, and
Peterka
,
R. J.
,
2009
, “
Contribution of Sensorimotor Integration to Spinal Stabilization in Humans
,”
J. Neurophysiol.
,
102
(
1
), pp.
496
512
.10.1152/jn.00118.2009
3.
Reeves
,
N. P.
,
Cholewicki
,
J.
, and
Narendra
,
K. S.
,
2009
, “
Effects of Reflex Delays on Postural Control During Unstable Seated Balance
,”
J. Biomech.
,
42
(
2
), pp.
164
170
.10.1016/j.jbiomech.2008.10.016
4.
Ghasemi
,
Z.
,
Kim
,
C.-S.
,
Ginsberg
,
E.
,
Gupta
,
A.
, and
Hahn
,
J.-O.
,
2017
, “
Model-Based Blind System Identification Approach to Estimation of Central Aortic Blood Pressure Waveform From Noninvasive Diametric Circulatory Signals
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
6
), p.
061003
.10.1115/1.4035451
5.
Zhang
,
H.
,
Feng
,
T.
,
Yang
,
G.-H.
, and
Liang
,
H.
,
2014
, “
Distributed Cooperative Optimal Control for Multiagent Systems on Directed Graphs: An Inverse Optimal Approach
,”
IEEE Trans. Cybern.
,
45
(
7
), pp.
1315
1326
.10.1109/TCYB.2014.2350511
6.
Mainprice
,
J.
,
Hayne
,
R.
, and
Berenson
,
D.
,
2016
, “
Goal Set Inverse Optimal Control and Iterative Replanning for Predicting Human Reaching Motions in Shared Workspaces
,”
IEEE Trans. Rob.
,
32
(
4
), pp.
897
908
.10.1109/TRO.2016.2581216
7.
Haddad
,
W. M.
, and
Jin
,
X.
,
2020
, “
Universal Feedback Controllers and Inverse Optimality for Nonlinear Stochastic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
2
), p.
021003
.10.1115/1.4045153
8.
Mombaur
,
K.
,
Truong
,
A.
, and
Laumond
,
J.-P.
,
2010
, “
From Human to Humanoid Locomotion—An Inverse Optimal Control Approach
,”
Auton. Robots
,
28
(
3
), pp.
369
383
.10.1007/s10514-009-9170-7
9.
Arechavaleta
,
G.
,
Laumond
,
J.-P.
,
Hicheur
,
H.
, and
Berthoz
,
A.
,
2008
, “
An Optimality Principle Governing Human Walking
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
5
14
.10.1109/TRO.2008.915449
10.
Mainprice
,
J.
,
Hayne
,
R.
, and
Berenson
,
D.
,
2015
, “
Predicting Human Reaching Motion in Collaborative Tasks Using Inverse Optimal Control and Iterative Re-Planning
,” 2015 IEEE International Conference on Robotics and Automation (
ICRA
), Seattle, WA, May 26–30, pp.
885
892
.10.1109/ICRA.2015.7139282
11.
Nguyen
,
V. Q.
,
Johnson
,
R. T.
,
Sup
,
F. C.
, and
Umberger
,
B. R.
,
2019
, “
Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
7
), pp.
1426
1435
.10.1109/TNSRE.2019.2922942
12.
Antsaklis
,
P. J.
, and
Michel
,
A. N.
,
2006
,
Linear Systems
,
Springer Science & Business Media
,
Berlin, Germany
.
13.
Fujii
,
T.
, and
Narazaki
,
M.
,
1984
, “
A Complete Optimality Condition in the Inverse Problem of Optimal Control
,”
SIAM J. Control Optim.
,
22
(
2
), pp.
327
341
.10.1137/0322022
14.
Kreindler
,
E.
, and
Jameson
,
A.
,
1972
, “
Optimality of Linear Control Systems
,”
IEEE Trans. Autom. Control
,
17
(
3
), pp.
349
351
.10.1109/TAC.1972.1099985
15.
Priess
,
M. C.
,
Conway
,
R.
,
Choi
,
J.
,
Popovich
,
J. M.
, and
Radcliffe
,
C.
,
2015
, “
Solutions to the Inverse LQR Problem With Application to Biological Systems Analysis
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
770
777
.10.1109/TCST.2014.2343935
16.
Monfort
,
M.
,
Liu
,
A.
, and
Ziebart
,
B.
,
2015
, “
Intent Prediction and Trajectory Forecasting Via Predictive Inverse Linear-Quadratic Regulation
,”
29th AAAI Conference on Artificial Intelligence
,” Austin, TX, Jan. 25–30, pp.
3672
3678
.10.1609/aaai.v29i1.9674
17.
Priess
,
M. C.
,
Choi
,
J.
, and
Radcliffe
,
C.
,
2013
, “
Determining Human Control Intent Using Inverse LQR Solutions
,”
ASME
Paper No. DSCC2013-3874.10.1115/DSCC2013-3874
18.
El-Hussieny
,
H.
,
Asker
,
A.
, and
Salah
,
O.
,
2017
, “
Learning the Sit-to-Stand Human Behavior: An Inverse Optimal Control Approach
,” 2017 13th International Computer Engineering Conference (
ICENCO
), Cairo, Egypt, Dec. 27–28, pp.
112
117
.10.1109/ICENCO.2017.8289773
19.
El-Hussieny
,
H.
,
Abouelsoud
,
A.
,
Assal
,
S. F.
, and
Megahed
,
S. M.
,
2016
, “
Adaptive Learning of Human Motor Behaviors: An Evolving Inverse Optimal Control Approach
,”
Eng. Appl. Artif. Intell.
,
50
, pp.
115
124
.10.1016/j.engappai.2016.01.024
20.
Ljung
,
L.
,
1977
, “
Analysis of Recursive Stochastic Algorithms
,”
IEEE Trans. Autom. Control
,
22
(
4
), pp.
551
575
.10.1109/TAC.1977.1101561
21.
Pan
,
H.
,
Niu
,
X.
,
Li
,
R.
,
Dou
,
Y.
, and
Jiang
,
H.
,
2020
, “
Annealed Gradient Descent for Deep Learning
,”
Neurocomputing
,
380
, pp.
201
211
.10.1016/j.neucom.2019.11.021
22.
Ramadan
,
A.
,
Cholewicki
,
J.
,
Radcliffe
,
C. J.
,
Popovich
,
J. M.
, Jr.
,
Reeves
,
N. P.
, and
Choi
,
J.
,
2017
, “
Reliability of Assessing Postural Control During Seated Balancing Using a Physical Human-Robot Interaction
,”
J. Biomech.
,
64
, pp.
198
205
.10.1016/j.jbiomech.2017.09.036
23.
Ramadan
,
A.
,
Choi
,
J.
,
Cholewicki
,
J.
,
Reeves
,
N. P.
,
Popovich
,
J. M.
, and
Radcliffe
,
C. J.
,
2019
, “
Feasibility of Incorporating Test-Retest Reliability and Model Diversity in Identification of Key Neuromuscular Pathways During Head Position Tracking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
2
), pp.
275
282
.10.1109/TNSRE.2019.2891525
24.
Reeves
,
N. P.
,
Sal y Rosas Celi
,
V. G.
,
Ramadan
,
A.
,
Popovich
,
J. M.
, Jr.
,
Radcliffe
,
C. J.
,
Choi
,
J.
, and
Cholewicki
,
J.
,
2020
, “
Quantifying Trunk Neuromuscular Control Using Seated Balancing and Stability Threshold
,”
J. Biomech.
,
112
, p.
110038
.10.1016/j.jbiomech.2020.110038
25.
Cody Priess
,
M.
,
Choi
,
J.
,
Radcliffe
,
C.
,
Popovich
,
J. M.
, Jr.
,
Cholewicki
,
J.
, and
Peter Reeves
,
N.
,
2015
, “
Time-Domain Optimal Experimental Design in Human Seated Postural Control Testing
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
5
), p.
054501
.10.1115/1.4028850
26.
Zatsiorsky
,
V. M.
,
2002
,
Kinetics of Human Motion
,
Human Kinetics
,
Champaign, IL
.
27.
Van Drunen
,
P.
,
Maaswinkel
,
E.
,
Van der Helm
,
F.
,
Van Dieën
,
J.
, and
Happee
,
R.
,
2013
, “
Identifying Intrinsic and Reflexive Contributions to Low-Back Stabilization
,”
J. Biomech.
,
46
(
8
), pp.
1440
1446
.10.1016/j.jbiomech.2013.03.007
28.
Peterka
,
R. J.
,
Murchison
,
C. F.
,
Parrington
,
L.
,
Fino
,
P. C.
, and
King
,
L. A.
,
2018
, “
Implementation of a Central Sensorimotor Integration Test for Characterization of Human Balance Control During Stance
,”
Front. Neurol.
,
9
, p.
1045
.10.3389/fneur.2018.01045
29.
Girden
,
E. R.
,
1992
,
ANOVA: Repeated Measures
,
Sage
,
Thousand Oaks, CA
.
30.
Huang
,
F. L.
,
2020
, “
MANOVA: A Procedure Whose Time Has Passed?
,”
Gifted Child Q.
,
64
(
1
), pp.
56
60
.10.1177/0016986219887200
31.
Ramadan
,
A.
,
Boss
,
C.
,
Choi
,
J.
,
Peter Reeves
,
N.
,
Cholewicki
,
J.
,
Popovich
,
J. M.
, Jr.
, and
Radcliffe
,
C. J.
,
2018
, “
Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification
,”
ASME J. Biomech. Eng.
,
140
(
7
), p.
074503
.10.1115/1.4039677
32.
Reeves
,
N. P.
,
Narendra
,
K. S.
, and
Cholewicki
,
J.
,
2007
, “
Spine Stability: The Six Blind Men and the Elephant
,”
Clin. Biomech.
,
22
(
3
), pp.
266
274
.10.1016/j.clinbiomech.2006.11.011
33.
Reeves
,
N. P.
,
Everding
,
V. Q.
,
Cholewicki
,
J.
, and
Morrisette
,
D. C.
,
2006
, “
The Effects of Trunk Stiffness on Postural Control During Unstable Seated Balance
,”
Exp. Brain Res.
,
174
(
4
), pp.
694
700
.10.1007/s00221-006-0516-5
34.
Ramadan
,
A.
,
Choi
,
J.
,
Radcliffe
,
C. J.
,
Popovich
,
J. M.
, and
Reeves
,
N. P.
,
2019
, “
Inferring Control Intent During Seated Balance Using Inverse Model Predictive Control
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
224
230
.10.1109/LRA.2018.2886407
You do not currently have access to this content.