Abstract

Existing noninvasive breathing assist options compatible with out-of-hospital settings are limited and not appropriate to enable essential everyday activities, thereby deteriorating the quality of life. In our prior work, we developed the Exo-Abs, a novel wearable robotic platform for ubiquitous assistance of respiratory functions in patients with respiratory deficiency. This paper concerns the development of a model-based closed-loop control algorithm for the Exo-Abs to automate its breathing assistance. To facilitate model-based development of closed-loop control algorithms, we developed a control-oriented mathematical model of the Exo-Abs. Then, we developed a robust absolutely stabilizing gain-scheduled proportional-integral control algorithm for automating the breathing assistance with the Exo-Abs, by (i) solving a linear matrix inequality formulation of the Lyapunov stability condition against sector-bounded uncertainty and interindividual variability in the mechanics of the abdomen and the lungs and (ii) augmenting it with a heuristic yet effective gain scheduling algorithm. Using in silico evaluation based on realistic and plausible virtual patients, we demonstrated the efficacy and robustness of the automated breathing assistance of the Exo-Abs under a wide range of variability in spontaneous breathing and Exo-Abs efficiency: the absolutely stabilizing gain-scheduled proportional-integral control resulted in small exhalation trajectory tracking error (<30 ml) with smooth actuation, which was superior to (i) its proportional-integral control counterpart in tracking efficacy and to (ii) its proportional-integral-derivative control counterpart in chattering.

References

1.
De Troyer
,
A.
, and
Boriek
,
A. M.
,
2011
, “
Mechanics of the Respiratory Muscles
,”
Compr. Physiol.
,
1
(
3)
, pp.
1273
1300
.https://www.fmed.uba.ar/sites/default/files/2020-05/detroyer2011.pdf
2.
Gea
,
J.
,
Ausín
,
P.
,
Martínez-Llorens
,
J. M.
, and
Barreiro
,
E.
,
2020
, “
Respiratory Muscle Senescence in Ageing and Chronic Lung Diseases
,”
Eur. Respir. Rev.
,
29
(
157
), pp.
200087
200088
.10.1183/16000617.0087-2020
3.
Aquino
,
Y. C.
,
Cabral
,
L. M.
,
Miranda
,
N. C.
,
Naccarato
,
M. C.
,
Falquetto
,
B.
,
Moreira
,
T. S.
, and
Takakura
,
A. C.
,
2022
, “
Respiratory Disorders of Parkinson's Disease
,”
J. Neurophysiol.
,
127
(
1
), pp.
1
15
.10.1152/jn.00363.2021
4.
Paz
,
A. L.
,
Doniz
,
L. G.
,
García
,
S. O.
,
Canosa
,
J. L. S.
, and
Couto
,
C. M.
,
2016
, “
Respiratory Muscle Strength in Chronic Stroke Survivors and Its Relation With the 6-Minute Walk Test
,”
Arch. Phys. Med. Rehabil.
,
97
(
2
), pp.
266
272
.10.1016/j.apmr.2015.10.089
5.
Braun
,
A. T.
,
Caballero-Eraso
,
C.
, and
Lechtzin
,
N.
,
2018
, “
Amyotrophic Lateral Sclerosis and the Respiratory System
,”
Clin. Chest Med.
,
39
(
2
), pp.
391
400
.10.1016/j.ccm.2018.01.003
6.
Galeiras Vázquez
,
R.
,
Rascado Sedes
,
P.
,
Mourelo Fariña
,
M.
,
Montoto Marqués
,
A.
, and
Ferreiro Velasco
,
M. E.
,
2013
, “
Respiratory Management in the Patient With Spinal Cord Injury
,”
BioMed Res. Int.
,
2013
, pp.
1
12
.10.1155/2013/168757
7.
Mauro
,
A. L.
, and
Aliverti
,
A.
,
2016
, “
Physiology of Respiratory Disturbances in Muscular Dystrophies
,”
Breathe
,
12
(
4
), pp.
318
327
.10.1183/20734735.012716
8.
Benditt
,
J. O.
,
2019
, “
Respiratory Care of Patients With Neuromuscular Disease
,”
Respir. Care
,
64
(
6
), pp.
679
688
.10.4187/respcare.06827
9.
Booth
,
S.
, and
Johnson
,
M. J.
,
2019
, “
Improving the Quality of Life of People With Advanced Respiratory Disease and Severe Breathlessness
,”
Breathe
,
15
(
3
), pp.
198
215
.10.1183/20734735.0200-2019
10.
Masip
,
J.
,
2007
, “
Non-Invasive Ventilation
,”
Heart Failure Rev.
,
12
(
2
), pp.
119
124
.10.1007/s10741-007-9012-7
11.
Cammarota
,
G.
,
Simonte
,
R.
, and
De Robertis
,
E.
,
2022
, “
Comfort During Non-Invasive Ventilation
,”
Front. Med.
,
9
, p.
874250
.10.3389/fmed.2022.874250
12.
Carron
,
M.
,
Freo
,
U.
,
BaHammam
,
A. S.
,
Dellweg
,
D.
,
Guarracino
,
F.
,
Cosentini
,
R.
,
Feltracco
,
P.
,
Vianello
,
A.
,
Ori
,
C.
, and
Esquinas
,
A.
,
2013
, “
Complications of Non-Invasive Ventilation Techniques: A Comprehensive Qualitative Review of Randomized Trials
,”
Br. J. Anaesth.
,
110
(
6
), pp.
896
914
.10.1093/bja/aet070
13.
Popat
,
B.
, and
Jones
,
A. T.
,
2012
, “
Invasive and Non-Invasive Mechanical Ventilation
,”
Medicine
,
40
(
6
), pp.
298
304
.10.1016/j.mpmed.2012.03.010
14.
Dodds
,
J. M.
,
Appelqvist
,
D. I.
,
Paleologos
,
M. S.
, and
Downey
,
R. G.
,
2023
, “
Variability in Oxygen Delivery With Bag-Valve-Mask Devices: An Observational Laboratory Simulation Study
,”
Anaesthesia Intensive Care
,
51
(
2
), pp.
130
140
.10.1177/0310057X221119824
15.
Khoury
,
A.
,
Hugonnot
,
S.
,
Cossus
,
J.
,
De Luca
,
A.
,
Desmettre
,
T.
,
Sall
,
F. S.
, and
Capellier
,
G.
,
2014
, “
From Mouth-to-Mouth to Bag-Valve-Mask Ventilation: Evolution and Characteristics of Actual Devices—a Review of the Literature
,”
BioMed Res. Int.
,
2014
, pp.
1
6
.10.1155/2014/762053
16.
Aliverti
,
A.
,
2017
, “
Wearable Technology: Role in Respiratory Health and Disease
,”
Breathe
,
13
(
2
), pp.
e27
e36
.10.1183/20734735.008417
17.
Soon
,
S.
,
Svavarsdottir
,
H.
,
Downey
,
C.
, and
Jayne
,
D. G.
,
2020
, “
Wearable Devices for Remote Vital Signs Monitoring in the Outpatient Setting: An Overview of the Field
,”
BMJ Innovations
,
6
(
2
), pp.
55
71
.10.1136/bmjinnov-2019-000354
18.
Hussain
,
T.
,
Ullah
,
S.
,
Fernández-García
,
R.
, and
Gil
,
I.
,
2023
, “
Wearable Sensors for Respiration Monitoring: A Review
,”
Sensors
,
23
(
17
), p.
7518
.10.3390/s23177518
19.
Lee
,
S.-Y.
,
Hahn
,
J.-O.
,
Beom
,
J.
,
Park
,
J.-H.
,
Cho
,
H. E.
,
Kang
,
S.-W.
, and
Cho
,
K.-J.
,
2022
, “
Exo-Abs: A Wearable Robotic System Inspired by Human Abdominal Muscles for Noninvasive and Effort-Synchronized Respiratory Assistance
,”
IEEE Trans. Rob.
,
38
(
5
), pp.
2994
3014
.10.1109/TRO.2022.3167399
20.
Lee
,
J. W. W.
,
Chiew
,
Y. S.
,
Wang
,
X.
,
Tan
,
C. P.
,
Nor
,
M. B. M.
,
Cove
,
M. E.
,
Damanhuri
,
N. S.
, and
Chase
,
J. G.
,
2022
, “
Protocol Conception for Safe Selection of Mechanical Ventilation Settings for Respiratory Failure Patients
,”
Comput. Methods Programs Biomed.
,
214
, p.
106577
.10.1016/j.cmpb.2021.106577
21.
Chiew
,
Y. S.
,
Chase
,
J. G.
,
Shaw
,
G. M.
,
Sundaresan
,
A.
, and
Desaive
,
T.
,
2011
, “
Model-Based PEEP Optimisation in Mechanical Ventilation
,”
Biomed. Eng. Online
,
10
(
1
), pp.
1
16
.10.1186/1475-925X-10-111
22.
Reinders
,
J.
,
Hunnekens
,
B.
,
Heck
,
F.
,
Oomen
,
T.
, and
van de Wouw
,
N.
,
2021
, “
Adaptive Control for Mechanical Ventilation for Improved Pressure Support
,”
IEEE Trans. Control Syst. Technol.
,
29
(
1
), pp.
180
193
.10.1109/TCST.2020.2969381
23.
Van Drunen
,
E. J.
,
Chiew
,
Y. S.
,
Chase
,
J. G.
,
Shaw
,
G. M.
,
Lambermont
,
B.
,
Janssen
,
N.
,
Damanhuri
,
N. S.
, and
Desaive
,
T.
,
2013
, “
Expiratory Model-Based Method to Monitor ARDS Disease State
,”
Biomed. Eng. Online
,
12
(
1
), pp.
1
15
.10.1186/1475-925X-12-57
24.
Morton
,
S. E.
,
Dickson
,
J.
,
Chase
,
J. G.
,
Docherty
,
P.
,
Desaive
,
T.
,
Howe
,
S. L.
,
Shaw
,
G. M.
, and
Tawhai
,
M.
,
2018
, “
A Virtual Patient Model for Mechanical Ventilation
,”
Comput. Methods Programs Biomed.
,
165
, pp.
77
87
.10.1016/j.cmpb.2018.08.004
25.
Morton
,
S. E.
,
Knopp
,
J. L.
,
Chase
,
J. G.
,
Docherty
,
P.
,
Howe
,
S. L.
,
Möller
,
K.
,
Shaw
,
G. M.
, and
Tawhai
,
M.
,
2019
, “
Optimising Mechanical Ventilation Through Model-Based Methods and Automation
,”
Annu. Rev. Control
,
48
, pp.
369
382
.10.1016/j.arcontrol.2019.05.001
26.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
Prentice Hall
,
Upper Saddle River, NJ
.
27.
Tivay
,
A.
,
Kramer
,
G. C.
, and
Hahn
,
J.-O.
,
2022
, “
Collective Variational Inference for Personalized and Generative Physiological Modeling: A Case Study on Hemorrhage Resuscitation
,”
IEEE Trans. Biomed. Eng.
,
69
(
2
), pp.
666
677
.10.1109/TBME.2021.3103141
28.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.10.1080/01621459.2017.1285773
29.
Kingma
,
D. P.
, and
Welling
,
M.
,
2019
, “
An Introduction to Variational Autoencoders
,”
Found. Trends® Mach. Learn.
,
12
(
4
), pp.
307
392
.10.1561/2200000056
30.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
716
723
.10.1109/TAC.1974.1100705
31.
Khalil
,
H. K.
,
2001
,
Nonlinear Systems
,
Pearson
,
Upper Saddle River, NJ
.
You do not currently have access to this content.