Freestanding flexible Si nanoparticles–multiwalled carbon nanotubes (SiNPs–MWNTs) composite paper anodes for Li-ion batteries (LIBs) have been prepared using a combination of ultrasonication and pressure filtration. No conductive additive, binder, or metal current collector is used. The SiNPs–MWNTs composite electrode material achieves first cycle specific discharge and charge capacities of 2298 and 1492 mAh/g, respectively. To address the first cycle irreversibility, stabilized Li metal powder (SLMP) has been utilized to prelithiate the composite anodes. As a result, the first cycle irreversible capacity loss is reduced from 806 to 28 mAh/g and the first cycle coulombic efficiency is increased from 65% to 98%. The relationship between different SLMP loadings and cell performance has been established to understand the prelithiation process of SLMP and to optimize the construction of Si-based cells. A cell containing the prelithiated anode is able to deliver charge capacity over 800 mAh/g without undergoing the initial discharge process, which enables the exploration of novel cathode materials.

References

1.
Szczech
,
J. R.
, and
Jin
,
S.
,
2011
, “
Nanostructured Silicon for High Capacity Lithium Battery Anodes
,”
Energy Environ. Sci.
,
4
(
1
), pp.
56
72
.
2.
Wu
,
H.
, and
Cui
,
Y.
,
2012
, “
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,”
Nano Today
,
7
(
5
), pp.
414
429
.
3.
Chan
,
C. K.
,
Patel
,
R. N.
,
O'Connell
,
M. J.
,
Korgel
,
B A.
, and
Cui
,
Y.
,
2010
, “
Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes
,”
ACS Nano
,
4
(
3
), pp.
1443
1450
.
4.
Hanrath
,
T.
, and
Korgel
,
B. A.
,
2003
, “
Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals
,”
Adv. Mater.
,
15
(
5
), pp.
437
440
.
5.
Liu
,
N.
,
Hu
,
L. B.
,
McDowell
,
M. T.
,
Jackson
,
A.
, and
Cui
,
Y.
,
2011
, “
Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries
,”
ACS Nano
,
5
(
8
), pp.
6487
6493
.
6.
Chan
,
C. K.
,
Peng
,
H. L.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
7.
Ge
,
M. Y.
,
Rong
,
J. P.
,
Fang
,
X.
, and
Zhou
,
C.
,
2012
, “
Porous Doped Silicon Nanowires for Lithium Ion Battery Anode With Long Cycle Life
,”
Nano Lett.
,
12
(
5
), pp.
2318
2323
.
8.
Rong
,
J. P.
,
Fang
,
X.
,
Ge
,
M. Y.
,
Chen
,
H.
,
Xu
,
J.
, and
Zhou
,
C.
,
2013
, “
Coaxial Si/Anodic Titanium Oxide/Si Nanotube Arrays for Lithium-Ion Battery Anodes
,”
Nano Res.
,
6
(
3
), pp.
182
190
.
9.
Wu
,
H.
,
Chan
,
G.
,
Choi
,
J. W.
,
Ryu
,
I.
,
Yao
,
Y.
,
McDowell
,
M. T.
,
Lee
,
S. W.
,
Jackson
,
A.
,
Yang
,
Y.
,
Hu
,
L.
, and
Cui
,
Y.
,
2012
, “
Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid-Electrolyte Interphase Control
,”
Nat. Nanotechnol.
,
7
(
5
), pp.
310
315
.
10.
Ge
,
M. Y.
,
Rong
,
J. P.
,
Fang
,
X.
,
Zhang
,
A.
,
Lu
,
Y.
, and
Zhou
,
C.
,
2013
, “
Scalable Preparation of Porous Silicon Nanoparticles and Their Application for Lithium-Ion Battery Anodes
,”
Nano Res.
,
6
(
3
), pp.
174
181
.
11.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
.
12.
Iwamura
,
S.
,
Nishihara
,
H.
, and
Kyotani
,
T.
,
2013
, “
Fast and Reversible Lithium Storage in a Wrinkled Structure Formed From Si Nanoparticles During Lithiation/Delithiation Cycling
,”
J. Power Sources
,
222
, pp.
400
409
.
13.
Lee
,
J. K.
,
Smith
,
K. B.
,
Hayner
,
C. M.
, and
Kung
,
H. H.
,
2010
, “
Silicon Nanoparticles-Graphene Paper Composites for Li Ion Battery Anodes
,”
Chem. Commun.
,
46
(
12
), pp.
2025
2027
.
14.
Magasinski
,
A.
,
Dixon
,
P.
,
Hertzberg
,
B.
,
Kvit
,
A.
,
Ayala
,
J.
, and
Yushin
,
G.
,
2010
, “
High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach
,”
Nat. Mater.
,
9
(
4
), pp.
353
358
.
15.
Wang
,
W.
, and
Kumta
,
P. N.
,
2007
, “
Reversible High Capacity Nanocomposite Anodes of Si/C/SWNTs for Rechargeable Li-Ion Batteries
,”
J. Power Sources
,
172
(
2
), pp.
650
658
.
16.
Sun
,
W.
,
Hu
,
R.
,
Liu
,
H.
,
Zeng
,
M.
,
Yang
,
L.
,
Wang
,
H.
, and
Zhu
,
M.
,
2014
, “
Embedding Nano-Silicon in Graphene Nanosheets by Plasma Assisted Milling for High Capacity Anode Materials in Lithium Ion Batteries
,”
J. Power Sources
,
268
, pp.
610
618
.
17.
Cui
,
L. F.
,
Hu
,
L. B.
,
Choi
,
J. W.
, and
Cui
,
Y.
,
2010
, “
Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries
,”
ACS Nano
,
4
(
7
), pp.
3671
3678
.
18.
Forney
,
M. W.
,
DiLeo
,
R. A.
,
Raisanen
,
A.
,
Ganter
,
M. J.
,
Staub
,
J. W.
,
Rogers
,
R. E.
,
Ridgley
,
R. D.
, and
Landi
,
B. J.
,
2013
, “
High Performance Silicon Free-Standing Anodes Fabricated by Low-Pressure and Plasma-Enhanced Chemical Vapor Deposition Onto Carbon Nanotube Electrodes
,”
J. Power Sources
,
228
, pp.
270
280
.
19.
Wang
,
W.
, and
Kumta
,
P. N.
,
2010
, “
Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes
,”
ACS Nano
,
4
(
4
), pp.
2233
2241
.
20.
Chou
,
S. L.
,
Zhao
,
Y.
,
Wang
,
J. Z.
,
Chen
,
Z.-X.
,
Liu
,
H.-K.
, and
Dou
,
S.-H.
,
2010
, “
Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries
,”
J. Phys. Chem. C
,
114
(
37
), pp.
15862
15867
.
21.
Park
,
K. S.
,
Min
,
K. M.
,
Seo
,
S. D.
,
Lee
,
G.-H.
,
Shim
,
H.-W.
, and
Kim
,
D.-W.
,
2013
, “
Self-Supported Multi-Walled Carbon Nanotube-Embedded Silicon Nanoparticle Films for Anodes of Li-Ion Batteries
,”
Mater. Res. Bull.
,
48
(
4
), pp.
1732
1736
.
22.
Smithyman
,
J.
,
Moench
,
A.
,
Liang
,
R.
,
Zheng
,
J. P.
,
Wang
,
B.
, and
Zhang
,
C.
,
2012
, “
Binder-Free Composite Electrodes Using Carbon Nanotube Networks as a Host Matrix for Activated Carbon Microparticles
,”
Appl. Phys. A
,
107
(
3
), pp.
723
731
.
23.
Jarvis
,
C. R.
,
Lain
,
M. J.
,
Yakovleva
,
M. V.
, and
Gao
,
Y.
,
2006
, “
A Prelithiated Carbon Anode for Lithium-Ion Battery Applications
,”
J. Power Sources
,
162
(
2
), pp.
800
802
.
24.
Jarvis
,
C. R.
,
Lain
,
M. J.
,
Gao
,
Y.
, and
Yakovleva
,
M. V.
,
2005
, “
A Lithium Ion Cell Containing a Non-Lithiated Cathode
,”
J. Power Sources
,
146
(
1–2
), pp.
331
334
.
25.
Li
,
Y.
, and
Fitch
,
B.
,
2011
, “
Effective Enhancement of Lithium-Ion Battery Performance Using SLMP
,”
Electrochem. Commun.
,
13
(
7
), pp.
664
667
.
26.
Wang
,
Z. H.
,
Fu
,
Y. B.
,
Zhang
,
Z. C.
,
Yuan
,
S.
,
Amine
,
K.
,
Battaglia
,
V.
, and
Liu
,
G.
,
2014
, “
Application of Stabilized Lithium Metal Powder (SLMP®) in Graphite Anode—A High Efficient Prelithiation Method for Lithium-Ion Batteries
,”
J. Power Sources
,
260
, pp.
57
61
.
27.
Cao
,
W. J.
, and
Zheng
,
J. P.
,
2012
, “
Li-Ion Capacitors With Carbon Cathode and Hard Carbon/Stabilized Lithium Metal Powder Anode Electrodes
,”
J. Power Sources
,
213
, pp.
180
185
.
28.
Cao
,
W. J.
, and
Zheng
,
J. P.
,
2013
, “
The Effect of Cathode and Anode Potentials on the Cycling Performance of Li-Ion Capacitors
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
1572
1576
.
29.
Cao
,
W. J.
,
Shih
,
J.
,
Zheng
,
J. P.
, and
Doung
,
T.
,
2014
, “
Development and Characterization of Li-Ion Capacitor Pouch Cells
,”
J. Power Sources
,
257
, pp.
388
393
.
30.
Cao
,
W.
,
Li
,
Y.
,
Fitch
,
B.
,
Shih
,
J.
,
Doung
,
T.
, and
Zheng
,
J.
,
2014
, “
Strategies to Optimize Lithium-Ion Supercapacitors Achieving High-Performance: Cathode Configurations, Lithium Loadings on Anode, and Types of Separator
,”
J. Power Sources
,
268
, pp.
841
847
.
31.
Forney
,
M. W.
,
Ganter
,
M. J.
,
Staub
,
J. W.
,
Ridgley
,
R. D.
, and
Landi
,
B. J.
,
2013
, “
Prelithiation of Silicon-Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP)
,”
Nano Lett.
,
13
(
9
), pp.
4158
4163
.
32.
Chew
,
S. Y.
,
Ng
,
S. H.
,
Wang
,
J. Z.
,
Novak
,
P.
,
Krumeich
,
F.
,
Chou
,
S. L.
,
Chen
,
J.
, and
Liu
,
H. K.
,
2009
, “
Flexible Free-Standing Carbon Nanotube Films for Model Lithium-Ion Batteries
,”
Carbon
,
47
(
13
), pp.
2976
2983
.
You do not currently have access to this content.