Abstract

The application of large-capacity automotive power batteries puts forward higher requirements on the safety test and evaluation technology. In this study, a series of mechanics experiments on a large-capacity prismatic lithium-ion battery (PLIB) cell, including quasi-static compression experiments and dynamic experiments at different speeds, were performed to investigate the mechanism involved in typical severe collision conditions of electric vehicles, such as side pillar collision, bottom ball impact, and frontal collision. The failure critical point of lithium-ion battery cell is obtained based on the record of test failure conditions. The finite element simulation on the platform Ls-Dyna is conducted to establish a numerical model of the selected large-capacity lithium-ion prismatic battery, where the constitutive behavior of the shell and jellyroll is determined through the experiments. The compression results of the finite element model have shown a good agreement with the experimental data, which demonstrates its effectiveness and accuracy. This research provides an effective and practical procedure to judge the safety of lithium-ion batteries after collisions and can be extended to the prediction and protection design of battery packs.

References

1.
Zhang
,
H. J.
,
Zhou
,
M. Z.
,
Hu
,
L. L.
, and
Zhang
,
Z. W.
,
2020
, “
Mechanism of the Dynamic Behaviors and Failure Analysis of Lithium-Ion Batteries Under Crushing Based on Stress Wave Theory
,”
Eng. Failure Anal.
,
108
, p.
104290
.
2.
Jia
,
Y. K.
,
Yin
,
S.
,
Liu
,
B. H.
,
Zhao
,
H.
,
Yu
,
H. L.
,
Li
,
J.
, and
Xu
,
J.
,
2019
, “
Unlocking the Coupling Mechanical-Electrochemical Behavior of Lithium-Ion Battery Upon Dynamic Mechanical Loading
,”
Energy
,
166
, pp.
951
960
.
3.
Liu
,
B. H.
,
Jia
,
Y. K.
,
Yuan
,
C. H.
,
Wang
,
L. B.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
4.
Ping
,
P.
,
Wang
,
Q.
,
Huang
,
P.
,
Sun
,
J.
, and
Chen
,
C.
,
2014
, “
Thermal Behaviour Analysis of Lithium-Ion Battery at Elevated Temperature Using Deconvolution Method
,”
Appl. Energy
,
129
, pp.
261
273
.
5.
Chen
,
M.
,
Zhou
,
D.
,
Chen
,
X.
,
Zhang
,
W. X.
,
Liu
,
J. H.
,
Yuen
,
R.
, and
Wang
,
J.
,
2015
, “
Investigation on the Thermal Hazards of 18650 Lithium Ion Batteries by Fire Calorimeter
,”
J. Therm. Anal. Calorim.
,
122
(
2
), pp.
755
763
.
6.
Sun
,
Q.
,
Jiang
,
L.
,
Gong
,
L.
, and
Sun
,
J. H.
,
2016
, “
Experimental Study on Thermal Hazard of Tributyl Phosphate-Nitric Acid Mixtures Using Micro Calorimeter Technique
,”
J. Hazard. Mater.
,
314
, pp.
230
236
.
7.
Jhu
,
C. Y.
,
Wang
,
Y. W.
,
Shu
,
C. M.
,
Chang
,
J. C.
, and
Wu
,
H. C.
,
2011
, “
Thermal Explosion Hazards on 18650 Lithium Ion Batteries With a VSP2 Adiabatic Calorimeter
,”
J. Hazard. Mater.
,
192
(
1
), pp.
99
107
.
8.
Zhu
,
J.
,
Wierzbicki
,
T.
, and
Li
,
W.
,
2018
, “
A Review of Safety-Focused Mechanical Modeling of Commercial Lithium-Ion Batteries
,”
J. Power Sources
,
378
, pp.
153
168
.
9.
Lai
,
W. J.
,
Ali
,
M. Y.
, and
Pan
,
J.
,
2014
, “
Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Modules Under Various Loading Conditions
,”
J. Power Sources
,
248
, pp.
789
808
.
10.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
, pp.
307
321
.
11.
Avdeev
,
I.
, and
Gilaki
,
M.
,
2014
, “
Structural Analysis and Experimental Characterization of Cylindrical Lithium-Ion Battery Cells Subject to Lateral Impact
,”
J. Power Sources
,
271
, pp.
382
391
.
12.
Zhang
,
X.
, and
Wierzbicki
,
T.
,
2015
, “
Characterization of Plasticity and Fracture of Shell Casing of Lithium-Ion Cylindrical Battery
,”
J. Power Sources
,
280
, pp.
47
56
.
13.
Chung
,
S. H.
,
Tancogne-Dejean
,
T.
,
Zhu
,
J.
,
Luo
,
H. L.
, and
Wierzbicki
,
T.
,
2018
, “
Failure in Lithium-Ion Batteries Under Transverse Indentation Loading
,”
J. Power Sources
,
389
, pp.
148
159
.
14.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
, pp.
467
476
.
15.
Zhu
,
J.
,
Zhang
,
X. W.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Sources
,
336
, pp.
332
340
.
16.
Lai
,
W. J.
,
Ali
,
M. Y.
, and
Pan
,
J.
,
2014
, “
Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Cells Under Compressive Loading Conditions
,”
J. Power Sources
,
245
, pp.
609
623
.
17.
Wang
,
H.
,
Simunovic
,
S.
,
Maleki
,
H.
,
Howard
,
J. N.
, and
Hallmark
,
J. A.
,
2016
, “
Internal Configuration of Prismatic Lithium-Ion Cells at the Onset of Mechanically Induced Short Circuit
,”
J. Power Sources
,
306
, pp.
424
430
.
18.
Li
,
W.
,
Xia
,
Y.
,
Chen
,
G. H.
, and
Sahraei
,
E.
,
2018
, “
Comparative Study of Mechanical–Electrical–Thermal Responses of Pouch, Cylindrical, and Prismatic Lithium-Ion Cells Under Mechanical Abuse
,”
Sci. China: Technol. Sci.
,
61
(
10
), pp.
1472
1482
.
19.
Lamb
,
J.
, and
Orendorff
,
C. J.
,
2014
, “
Evaluation of Mechanical Abuse Techniques in Lithium Ion Batteries
,”
J. Power Sources
,
247
, pp.
189
196
.
20.
Wang
,
T.
,
Chen
,
X. P.
,
Chen
,
G.
,
Ji
,
H. B.
,
Li
,
L.
,
Yuan
,
Q.
,
Liu
,
Y. Z.
, and
Ji
,
Y. P.
,
2021
, “
Investigation of Mechanical Integrity of Prismatic Lithium-Ion Batteries With Various State of Charge
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
3
), p.
031002
.
21.
Nguyen
,
T. D.
,
Deng
,
J.
,
Robert
,
B.
,
Chen
,
W.
, and
Siegmund
,
T.
,
2021
, “
Deformation Behavior of Single Prismatic Battery Cell Cases and Cell Assemblies Loaded by Internal Pressure
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
4
), p.
040901
.
22.
Li
,
Z. J.
,
Chen
,
J. Q.
,
Lan
,
F. C.
, and
Li
,
Y. G.
,
2021
, “
Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries Under Mechanical Loading
,”
Energies
,
14
(
5
), p.
1219
.
23.
Wang
,
L. B.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
, pp.
284
292
.
24.
Wang
,
L. B.
,
Yin
,
S.
,
Yu
,
Z. X.
,
Wang
,
Y. G.
,
Yue
,
T. X.
,
Zhao
,
J.
,
Xie
,
Z. C.
,
Li
,
Y. X.
, and
Xu
,
J.
,
2018
, “
Unlocking the Significant Role of Shell Material for Lithium-Ion Battery Safety
,”
Mater. Des.
,
160
, pp.
601
610
.
25.
Liu
,
B. H.
,
Jia
,
Y. K.
,
Li
,
J.
,
Yin
,
S.
,
Yuan
,
C. H.
,
Hu
,
Z. H.
,
Wang
,
L. B.
,
Li
,
Y. X.
, and
Xu
,
J.
,
2018
, “
Safety Issues Caused by Internal Short Circuits in Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
6
(
43
), pp.
21475
21484
.
26.
Xu
,
J.
,
Liu
,
B. H.
,
Wang
,
X. Y.
, and
Hu
,
D. Y.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
.
27.
Golmon
,
S.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Numerical Modeling of Electrochemical–Mechanical Interactions in Lithium Polymer Batteries
,”
Comput. Struct.
,
87
(
23–24
), pp.
1567
1579
.
28.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
, pp.
360
372
.
29.
Chen
,
X. P.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H. B.
,
Ji
,
Y. P.
, and
Yuan
,
Q.
,
2019
, “
Dynamic Mechanical Behavior of Prismatic Lithium-Ion Battery Upon Impact
,”
Int. J. Energy Res.
,
43
(
13
), pp.
7421
7432
.
30.
Chen
,
X. P.
,
Yuan
,
Q.
,
Wang
,
T.
,
Ji
,
H. B.
,
Ji
,
Y. P.
,
Li
,
L.
, and
Liu
,
Y. Z.
,
2020
, “
Experimental Study on the Dynamic Behavior of Prismatic Lithium-Ion Battery Upon Repeated Impact
,”
Eng. Failure Anal.
,
115
, p.
104667
.
31.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical–Electrical–Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
.
32.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
A Representative-Sandwich Model for Simultaneously Coupled Mechanical–Electrical–Thermal Simulation of a Lithium-Ion Cell Under Quasi-Static Indentation Tests
,”
J. Power Sources
,
298
, pp.
309
321
.
33.
Zhang
,
C.
,
Xu
,
J.
,
Cao
,
L.
,
Wu
,
Z. N.
, and
Santhanagopalan
,
S.
,
2017
, “
Constitutive Behavior and Progressive Mechanical Failure of Electrodes in Lithium-Ion Batteries
,”
J. Power Sources
,
357
, pp.
126
137
.
34.
ISO 6892-1:2019
,
2019
, “
Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature
.
35.
Xu
,
J.
,
Liu
,
B. H.
, and
Hu
,
D. Y.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), p.
21829
.
You do not currently have access to this content.