Abstract

SnO2-based materials are promising catalysts for CO2 electrochemical reduction due to their attractive selectivity for C1 products (formate and carbon monoxide) but they tend to suffer high overpotential and poor stability. Here, a porous SnO2/ZnO catalyst is synthesized via hydroxides coprecipitation, hydrothermal treatment, and carbon black template calcination. SnO2 nanocrystals are produced by calcination of tin hydroxides while the growth of ZnO nanocrystals is associated with carbon black template. The porous SnO2/ZnO catalyst presents a stable Faradaic efficiency of >90% for CO2 reduction at an applied voltage of −0.7 V versus reversible hydrogen electrode and a C1 current density of 9.53 mA/cm2 over a testing period of 100 h. The improved performance is originated from abundant hetero-junctions and lattice defects of SnO2 and ZnO nanocrystals, large specific surface area, and grain boundary. This study provides a facile method to fabricate porous and nanocrystal metal oxides electrocatalysts for electrochemical processes.

References

1.
Li
,
D.
,
Liu
,
T.
,
Yan
,
Z.
,
Zhen
,
L.
,
Liu
,
J.
,
Wu
,
J.
, and
Feng
,
Y.
,
2020
, “
MOF-Derived Cu2O/Cu Nanospheres Anchored in Nitrogen-Doped Hollow Porous Carbon Framework for Increasing the Selectivity and Activity of Electrochemical CO2-to-Formate Conversion
,”
ACS Appl. Mater. Interfaces
,
12
(
6
), pp.
7030
7037
.
2.
Lan
,
Y.
,
Niu
,
G.
,
Wang
,
F.
,
Cui
,
D.
, and
Hu
,
Z.
,
2020
, “
SnO2-Modified Two-Dimensional CuO for Enhanced Electrochemical Reduction of CO2 to C2H4
,”
ACS Appl. Mater. Interfaces
,
12
(
32
), pp.
36128
36136
.
3.
Ye
,
K.
,
Zhou
,
Z.
,
Shao
,
J.
,
Lin
,
L.
,
Gao
,
D.
,
Ta
,
N.
,
Si
,
R.
,
Wang
,
G.
, and
Bao
,
X.
,
2020
, “
In Situ Reconstruction of a Hierarchical Sn-Cu/SnOx Core/Shell Catalyst for High-Performance CO2 Electroreduction
,”
Angew. Chem., Int. Ed.
,
59
(
12
), pp.
4814
4821
.
4.
Luo
,
W.
,
Zhang
,
Q.
,
Zhang
,
J.
,
Moioli
,
E.
,
Zhao
,
K.
, and
Züttel
,
A.
,
2020
, “
Electrochemical Reconstruction of ZnO for Selective Reduction of CO2 to CO
,”
Appl. Catal. B
,
273
(
11
), p.
9060
.
5.
Um
,
I. C.
,
Kweon
,
H.
,
Park
,
Y. H.
, and
Hudson
,
S.
,
2001
, “
Structural Characteristics and Properties of the Regenerated Silk Fibroin Prepared From Formic Acid
,”
Int. J. Biol. Macromol.
,
29
(
2
), pp.
91
97
.
6.
Li
,
B.
,
Xu
,
W.
,
Kronlund
,
D.
,
Määttänen
,
A.
,
Liu
,
J.
,
Smått
,
J.-H.
,
Peltonen
,
J.
,
Willför
,
S.
,
Mu
,
X.
, and
Xu
,
C.
,
2015
, “
Cellulose Nanocrystals Prepared Via Formic Acid Hydrolysis Followed by TEMPO-Mediated Oxidation
,”
Carbohydr. Polym.
,
133
(
7
), pp.
605
612
.
7.
Li
,
F.
,
Chen
,
L.
,
Knowles
,
G. P.
,
MacFarlane
,
D. R.
, and
Zhang
,
J.
,
2017
, “
Hierarchical Mesoporous SnO2 Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO2 Reduction With High Efficiency and Selectivity
,”
Angew. Chem.
,
129
(
2
), pp.
520
524
.
8.
Li
,
Q.
,
Fu
,
J.
,
Zhu
,
W.
,
Chen
,
Z.
,
Shen
,
B.
,
Wu
,
L.
,
Xi
,
Z.
, et al
,
2017
, “
Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO Via the Core/Shell Cu/SnO2 Structure
,”
J. Am. Chem. Soc.
,
139
(
12
), pp.
4290
4293
.
9.
Fan
,
L.
,
Xia
,
Z.
,
Xu
,
M.
,
Lu
,
Y.
, and
Li
,
Z.
,
2018
, “
1D SnO2 With Wire-in-Tube Architectures for Highly Selective Electrochemical Reduction of CO2 to C1 Products
,”
Adv. Funct. Mater.
,
28
(
17
), p.
1706289
.
10.
Zhang
,
S.
,
Sun
,
M.
,
Wang
,
K.-Y.
,
Cheng
,
L.
,
Zhang
,
S.
, and
Wang
,
C.
,
2021
, “
Conversion of Organically Directed Selenidostannate Into Porous SnO2 Exhibiting Effective Electrochemical Reduction of CO2 to C1 Products
,”
ACS Sustain. Chem. Eng.
,
9
(
5
), pp.
2358
2366
.
11.
Bejtka
,
K.
,
Zeng
,
J.
,
Sacco
,
A.
,
Castellino
,
M.
,
Hernández
,
S.
,
Farkhondehfal
,
M. A.
,
Savino
,
U.
,
Ansaloni
,
S.
,
Pirri
,
C. F.
, and
Chiodoni
,
A.
,
2019
, “
Chainlike Mesoporous SnO2 as a Well-Performing Catalyst for Electrochemical CO2 Reduction
,”
ACS Appl. Energy Mater.
,
2
(
5
), pp.
3081
3091
.
12.
Wei
,
F.
,
Wang
,
T.
,
Jiang
,
X.
,
Ai
,
Y.
,
Cui
,
A.
,
Cui
,
J.
,
Fu
,
J.
, et al
,
2020
, “
Controllably Engineering Mesoporous Surface and Dimensionality of SnO2 Toward High-Performance CO2 Electroreduction
,”
Adv. Funct. Mater.
,
30
(
39
), p.
2002092
.
13.
Fu
,
Y.
,
Wang
,
T.
,
Zheng
,
W.
,
Lei
,
C.
,
Yang
,
B.
,
Chen
,
J.
,
Li
,
Z.
,
Lei
,
L.
,
Yuan
,
C.
, and
Hou
,
Y.
,
2020
, “
Nanoconfined Tin Oxide Within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO2 to Formate and C1 Products
,”
ACS Appl. Mater. Interfaces
,
12
(
14
), pp.
16178
16185
.
14.
Tan
,
D.
,
Lee
,
W.
,
Kim
,
Y. E.
,
Ko
,
Y. N.
,
Youn
,
M. H.
,
Jeon
,
Y. E.
,
Hong
,
J.
,
Jeong
,
S. K.
, and
Park
,
K. T.
,
2020
, “
SnO2/ZnO Composite Hollow Nanofiber Electrocatalyst for Efficient CO2 Reduction to Formate
,”
ACS Sustain. Chem. Eng.
,
8
(
29
), p.
10639
.
15.
Kim
,
Y. E.
,
Lee
,
W.
,
Youn
,
M. H.
,
Jeong
,
S. K.
,
Kim
,
H. J.
,
Park
,
J. C.
, and
Park
,
K. T.
,
2019
, “
Leaching-Resistant SnO2/γ-Al2O3 Nanocatalyst for Stable Electrochemical CO2 Reduction Into Formate
,”
J. Ind. Eng. Chem.
,
78
(
5
), pp.
73
78
.
16.
Kumar
,
B.
,
Atla
,
V.
,
Brian
,
J. P.
,
Kumari
,
S.
,
Nguyen
,
T. Q.
,
Sunkara
,
M.
, and
Spurgeon
,
J. M.
,
2017
, “
Reduced SnO2 Porous Nanowires With a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO2-Into-HCOOH Conversion
,”
Angew. Chem. Int. Ed.
,
56
(
13
), pp.
3645
3649
.
17.
Liu
,
Y.
,
Fan
,
M.
,
Zhang
,
X.
,
Zhang
,
Q.
,
Guay
,
D.
, and
Qiao
,
J.
,
2017
, “
Design and Engineering of Urchin-Like Nanostructured SnO2 Catalysts Via Controlled Facial Hydrothermal Synthesis for Efficient Electro-Reduction of CO2
,”
Electrochim. Acta
,
248
(
7
), pp.
123
132
.
18.
Fu
,
Y.
,
Li
,
Y.
,
Zhang
,
X.
,
Liu
,
Y.
,
Qiao
,
J.
,
Zhang
,
J.
, and
Wilkinson
,
D. P.
,
2016
, “
Novel Hierarchical SnO2 Microsphere Catalyst Coated on Gas Diffusion Electrode for Enhancing Energy Efficiency of CO2 Reduction to Formate Fuel
,”
Appl. Energy
,
175
(
3
), pp.
536
544
.
19.
Lourenço
,
M. A. O.
,
Zeng
,
J.
,
Jagdale
,
P.
,
Castellino
,
M.
,
Sacco
,
A.
,
Farkhondehfal
,
M. A.
, and
Pirri
,
C. F.
,
2021
, “
Biochar/Zinc Oxide Composites as Effective Catalysts for Electrochemical CO2 Reduction
,”
ACS Sustain. Chem. Eng.
,
9
(
15
), pp.
5445
5453
.
20.
Wang
,
X.
,
Jiang
,
X.
,
Wang
,
Q.
,
Zhang
,
T.
,
Li
,
P.
,
Wang
,
M.
, and
Shen
,
Y.
,
2020
, “
Investigation on In–TiO2 Composites as Highly Efficient Elecctrocatalyst for CO2 Reduction
,”
Electrochim. Acta
,
340
(
13
), p.
5948
.
21.
Wen
,
G.
,
Lee
,
D. U.
,
Ren
,
B.
,
Hassan
,
F. M.
,
Jiang
,
G.
,
Cano
,
Z. P.
,
Gostick
,
J.
, et al
,
2018
, “
Orbital Interactions in Bi-Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO2 Reduction Toward Formate Production
,”
Adv. Energy Mater.
,
8
(
31
), p.
1802427
.
22.
Bejtka
,
K.
,
Monti
,
N. B. D.
,
Sacco
,
A.
,
Castellino
,
M.
,
Porro
,
S.
,
Farkhondehfal
,
M. A.
,
Zeng
,
J.
,
Pirri
,
C. F.
, and
Chiodoni
,
A.
,
2021
, “
Zn- and Ti-Doped SnO2 for Enhanced Electroreduction of Carbon Dioxide
,”
Materials
,
14
(
9
), p.
2354
.
23.
Wang
,
K.
,
Liu
,
D.
,
Deng
,
P.
,
Liu
,
L.
,
Lu
,
S.
,
Sun
,
Z.
,
Ma
,
Y.
, et al
,
2019
, “
Band Alignment in Zn2SnO4/SnO2 Heterostructure Enabling Efficient CO2 Electrochemical Reduction
,”
Nano Energy
,
64
(
10
), p.
3954
.
24.
Wang
,
Q.
,
Lei
,
Y.
,
Wang
,
D.
, and
Li
,
Y.
,
2019
, “
Defect Engineering in Earth-Abundant Electrocatalysts for CO2 and N2 Reduction
,”
Energy Environ. Sci.
,
12
(
6
), pp.
1730
1750
.
25.
Shi
,
Q.
,
Huang
,
J.
,
Yang
,
Y.
,
Wu
,
J.
,
Shen
,
J.
,
Liu
,
X.
,
Sun
,
A.
, and
Liu
,
Z.
,
2020
, “
In-Situ Construction of Urchin-Like Hierarchical g-C3N4/NiAl-LDH Hybrid for Efficient Photoreduction of CO2
,”
Mater. Lett.
,
268
(
12
), p.
7560
.
26.
Xu
,
M.
,
Zhao
,
X.
,
Jiang
,
H.
,
Chen
,
S.
, and
Huo
,
P.
,
2021
, “
MOFs-Derived C-In2O3/g-C3N4 Heterojunction for Enhanced Photoreduction CO2
,”
J. Environ. Chem. Eng.
,
9
(
6
), p.
6469
.
27.
Wang
,
Y.
,
Han
,
P.
,
Lv
,
X.
,
Zhang
,
L.
, and
Zheng
,
G.
,
2018
, “
Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction
,”
Joule
,
2
(
12
), pp.
2551
2582
.
28.
Hou
,
Y.
,
Liang
,
Y.-L.
,
Shi
,
P.-C.
,
Huang
,
Y.-B.
, and
Cao
,
R.
,
2020
, “
Atomically Dispersed Ni Species on N-Doped Carbon Nanotubes for Electroreduction of CO2 With Nearly 100% CO Selectivity
,”
Appl. Catal. B
,
271
(
11
), p.
8929
.
29.
Guo
,
J.-H.
,
Zhang
,
X.-Y.
,
Dao
,
X.-Y.
, and
Sun
,
W.-Y.
,
2020
, “
Nanoporous Metal–Organic Framework-Based Ellipsoidal Nanoparticles for the Catalytic Electroreduction of CO2
,”
ACS Appl. Nano Mater.
,
3
(
3
), pp.
2625
2635
.
30.
Hu
,
X.-M.
,
Hval
,
H. H.
,
Bjerglund
,
E. T.
,
Dalgaard
,
K. J.
,
Madsen
,
M. R.
,
Pohl
,
M.-M.
,
Welter
,
E.
, et al
,
2018
, “
Selective CO2 Reduction to CO in Water Using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts
,”
ACS Catal.
,
8
(
7
), pp.
6255
6264
.
31.
Su
,
X.
,
Sun
,
Y.
,
Jin
,
L.
,
Zhang
,
L.
,
Yang
,
Y.
,
Kerns
,
P.
,
Liu
,
B.
,
Li
,
S.
, and
He
,
J.
,
2020
, “
Hierarchically Porous Cu/Zn Bimetallic Catalysts for Highly Selective CO2 Electroreduction to Liquid C2 Products
,”
Appl. Catal. B
,
269
(
11
), p.
8800
.
32.
Kibsgaard
,
J.
,
Chen
,
Z.
,
Reinecke
,
B. N.
, and
Jaramillo
,
T. F.
,
2012
, “
Engineering the Surface Structure of MoS2 to Preferentially Expose Active Edge Sites for Electrocatalysis
,”
Nat. Mater.
,
11
(
11
), pp.
963
969
.
33.
Lu
,
Q.
,
Hutchings
,
G. S.
,
Yu
,
W.
,
Zhou
,
Y.
,
Forest
,
R. V.
,
Tao
,
R.
,
Rosen
,
J.
, et al
,
2015
, “
Highly Porous Non-Precious Bimetallic Electrocatalysts for Efficient Hydrogen Evolution
,”
Nat. Commun.
,
6
(
1
), p.
6567
.
34.
Li
,
J.
,
Jiao
,
J.
,
Zhang
,
H.
,
Zhu
,
P.
,
Ma
,
H.
,
Chen
,
C.
,
Xiao
,
H.
, and
Lu
,
Q.
,
2020
, “
Two-Dimensional SnO2 Nanosheets for Efficient Carbon Dioxide Electroreduction to Formate
,”
ACS Sustain. Chem. Eng.
,
8
(
12
), pp.
4975
4982
.
35.
Geng
,
Z.
,
Kong
,
X.
,
Chen
,
W.
,
Su
,
H.
,
Liu
,
Y.
,
Cai
,
F.
,
Wang
,
G.
, and
Zeng
,
J.
,
2018
, “
Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO
,”
Angew. Chem. Int. Ed.
,
57
(
21
), pp.
6054
6059
.
36.
Chu
,
K.
,
Liu
,
Y.-p.
,
Li
,
Y.-b.
,
Guo
,
Y.-l.
, and
Tian
,
Y.
,
2020
, “
Two-dimensional (2D)/2D Interface Engineering of a MoS2/C3N4 Heterostructure for Promoted Electrocatalytic Nitrogen Fixation
,”
ACS Appl. Mater. Interfaces
,
12
(
6
), pp.
7081
7090
.
37.
Dutta
,
A.
,
Kuzume
,
A.
,
Rahaman
,
M.
,
Vesztergom
,
S.
, and
Broekmann
,
P.
,
2015
, “
Monitoring the Chemical State of Catalysts for CO2 Electroreduction: An In Operando Study
,”
ACS Catal.
,
5
(
12
), pp.
7498
7502
.
38.
Liu
,
S.
,
Pang
,
F.
,
Zhang
,
Q.
,
Guo
,
R.
,
Wang
,
Z.
,
Wang
,
Y.
,
Zhang
,
W.
, and
Ou
,
J.
,
2018
, “
Stable Nanoporous Sn/SnO2 Composites for Efficient Electroreduction of CO2 to Formate Over Wide Potential Range
,”
Appl. Mater. Today
,
13
(
8
), pp.
135
143
.
You do not currently have access to this content.