Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The automotive film capacitors (AFCs) stand as a widely employed components in electric vehicles. Yet, a notable concern arises with the potential for excessive ripple current, which can prompt self-heating in the AFC and diminish its reliability. Therefore, it becomes crucial to conduct thermal management and effective heat dissipation design for the AFC to ensure its optimal performance. In this study, considering the trend toward integrated and lightweight motor controllers, a parallel microchannel cooling plate (PMCP) is designed at the bottom of the AFC. Through optimization, the thermal performance of the AFC and the overall cooling performance of the PMCP are enhanced. The AFC thermal model is established, and the calculation method for equivalent thermal properties of the film capacitor core is described. A conjugate heat transfer simulation model for the AFC and the PMCP is created by fluent and validated through two experimental tests. In addition, based on an optimal Latin hypercube sample size, the accuracy of five fitting models is compared and the nondominated sorting genetic algorithm II (NSGA-II) for optimization is employed. The results indicate that the error between the simulation method and the two experiments is within 5%. The application of the PMCP effectively redistributes the hottest region of the AFC to the outer housing, reducing the maximum AFC temperature by 10.90 °C. Among the five fitting models, the response surface model (RSM) proved to be the most accurate. The optimized PMCP enhances the overall cooling performance by 10.32% and increases the maximum withstand ripple current of the AFC by 43.83%.

References

1.
Xiao
,
M.
,
Zhang
,
Z.
,
Chen
,
Y.
,
Du
,
X.
, and
Du
,
B.
,
2023
, “
High-Temperature Polymerdielectrics for New Energy Power Equipment
,”
High Temp. Polym. Dielectr.
, pp.
227
267
.
2.
Gnonhoue
,
O. G.
,
Velazquez-Salazar
,
A.
,
David
,
É.
, and
Preda
,
I.
,
2021
, “
Review of Technologies and Materials Used in High-Voltage Film Capacitors
,”
Polymers
,
13
(
5
), p.
766
.
3.
Zhang
,
Y.-X.
,
Feng
,
Q.-K.
,
Chen
,
F.-Y.
,
Zhong
,
S.-L.
,
Pei
,
J.-Y.
,
Ping
,
J.-B.
,
Yin
,
L.-J.
,
Cao
,
W.-Y.
,
Liu
,
D.-F.
, and
Dang
,
Z.-M.
,
2021
, “
Carbon Emission and its Reduction: From the Perspective of Film Capacitors in the Energy System
,”
2021 Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2021)
,
Beijing, China
,
Dec. 28–30
, pp.
406
411
.
4.
Chowdhury
,
S.
,
Gurpinar
,
E.
, and
Ozpineci
,
B.
,
2020
, “
High-Energy Density Capacitors for Electric Vehicle Traction Inverters
,”
2020 IEEE Transportation Electrification Conference & Expo (ITEC)
,
Chicago, IL
,
June 23–26
, pp.
644
650
.
5.
Butt
,
O. M.
,
Butt
,
T. M.
,
Ashfaq
,
M. H.
,
Talha
,
M.
,
Raihan
,
S. R. S.
, and
Hussain
,
M. M.
,
2022
, “
Simulative Study to Reduce DC-Link Capacitor of Drive Train for Electric Vehicles
,”
Energies
,
15
(
12
), p.
4499
.
6.
Marati
,
N.
,
Ahammed
,
S.
,
Karuppazaghi
,
K.
,
Vaithilingam
,
B.
,
Biswal
,
G. R.
,
Bobba
,
P. B.
,
Padmanaban
,
S.
, and
Chenniappan
,
S.
,
2022
, “
Recent Advancements in Power Electronics for Modern Power Systems-Comprehensive Review on DC-Link Capacitors Concerning Power Density Maximization in Power Converters
,”
Artif. Intell. Smart Power Syst.
, pp.
65
98
.
7.
Ho
,
J. S.
, and
Greenbaum
,
S. G.
,
2018
, “
Polymer Capacitor Dielectrics for High Temperature Applications
,”
ACS Appl. Mater. Interfaces
,
10
(
35
), pp.
29189
29218
.
8.
Chowdhury
,
S.
,
Gurpinar
,
E.
, and
Ozpineci
,
B.
,
2022
, “
Capacitor Technologies: Characterization, Selection, and Packaging for Next-Generation Power Electronics Applications
,”
IEEE Trans. Transp. Electrif.
,
8
(
2
), pp.
2710
2720
.
9.
Zhang
,
W.
,
Wang
,
Y.
,
Xu
,
P.
,
Li
,
D.
, and
Liu
,
B.
,
2023
, “
A High-Reliability PV System by Replacing Electrolytic Capacitors With Film Capacitors
,”
Energy Rep.
,
9
, pp.
299
305
.
10.
Makdessi
,
M.
,
Sari
,
A.
,
Venet
,
P.
,
Bevilacqua
,
P.
, and
Joubert
,
C.
,
2015
, “
Accelerated Ageing of Metallized Film Capacitors Under High Ripple Currents Combined With a DC Voltage
,”
IEEE Trans. Power Electron.
,
30
(
5
), pp.
2435
2444
.
11.
Tong
,
H.
,
Yao
,
W.
,
Li
,
C.
,
Luo
,
H.
, and
Li
,
W.
,
2024
, “
Current Sharing Analysis and Evaluation of Parallel DC-Link Capacitors in Vehicle Motor Drive
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
12
(
2
), pp.
2188
2202
.
12.
Mach
,
P.
, and
Horak
,
M.
,
2020
, “
Analysis of Changes Due to Long-Term Thermal Aging in Capacitors Manufactured From Polypropylene Film
,”
2020 43rd International Spring Seminar on Electronics Technology (ISSE)
,
Demanovska Valley, Slovakia
,
May 14–15
, pp.
1
5
.
13.
He
,
Y.
,
Wang
,
F.
,
Du
,
G.
,
Pan
,
L.
,
Wang
,
K.
,
Gerhard
,
R.
,
Plath
,
R.
,
Rozga
,
P.
, and
Trnka
,
P.
,
2022
, “
Revisiting the Thermal Ageing on the Metallized Polypropylene Film Capacitor: From Device to Dielectric Film
,”
High Voltage
,
8
(
2
), pp.
305
314
.
14.
Fujishima
,
N.
,
2024
, “
Technical Trends of SiC Power Semiconductor Devices and Their Applications in Power Electronics
,”
IEEJ J. Ind. Appl.
,
13
(
4
), pp.
372
378
.
15.
Wu
,
X.
,
Liu
,
Y.
,
Lin
,
X.
,
Huang
,
E.
,
Song
,
G.
, and
Tan
,
D. Q.
,
2022
, “
Atomic Layer Deposition Coated Polymer Films With Enhanced High-Temperature Dielectric Strength Suitable for Film Capacitors
,”
Surf. Interfaces
,
28
, p.
101686
.
16.
Wang
,
Z.
,
Lu
,
Y.
, and
Ma
,
Y.
,
2021
, “
Temperature Rise of Metallized Film Capacitors Under AC and DC Superimposed Voltage
,”
IEEE Trans. Plasma Sci.
,
49
(
12
), pp.
3883
3891
.
17.
Cui
,
Y.
,
Sun
,
Y.
,
Lu
,
W.
,
Yao
,
C.
, and
Zhou
,
C.
,
2023
, “
Research on the Influence of Safety Film on the Thermal Field Distribution of Metallized Film Capacitors
,”
Lect. Notes Electr. Eng.
, pp.
447
455
.
18.
Chen
,
Y.
,
Lin
,
F.
,
Li
,
H.
,
Lv
,
F.
,
Zhang
,
M.
, and
Li
,
Z.
,
2011
, “
Study on Self-Healing and Lifetime Characteristics of Metallized Film Capacitor Under High Electric Field
,”
2011 IEEE Pulsed Power Conference
,
Chicago, IL
,
June 19–23
, pp.
711
716
.
19.
Qin
,
S.
,
Ho
,
J.
,
Rabuffi
,
M.
,
Borelli
,
G.
, and
Jow
,
T.
,
2011
, “
Implications of the Anisotropic Thermal Conductivity of Capacitor Windings
,”
IEEE Electr. Insul. Mag.
,
27
(
1
), pp.
7
13
.
20.
Wang
,
Z.
,
Yan
,
F.
,
Hua
,
Z.
,
Qi
,
L.
,
Hou
,
Z.
, and
Xu
,
Z.
,
2016
, “
Geometric Optimization of Self-Healing Power Capacitor With Consideration of Multiple Factors
,”
J. Power Sources
,
323
, pp.
147
157
.
21.
Zhang
,
T.
,
Sun
,
H.
,
Yin
,
C.
,
Jung
,
Y. H.
,
Min
,
S.
,
Zhang
,
Y.
,
Zhang
,
C.
,
Chen
,
Q.
,
Lee
,
K. J.
, and
Chi
,
Q.
,
2023
, “
Recent Progress in Polymer Dielectric Energy Storage: From Film Fabrication and Modification to Capacitor Performance and Application
,”
Prog. Mater. Sci.
,
140
, p.
101207
.
22.
Tan
,
D. Q.
,
2019
, “
Review of Polymer-Based Nanodielectric Exploration and Film Scale-Up for Advanced Capacitors
,”
Adv. Funct. Mater.
,
30
(
18
), p.
1808567
.
23.
Wu
,
Z.
,
Peng
,
Y.
,
Song
,
Y.
,
Liang
,
H.
,
Gong
,
L.
,
Liu
,
Z.
,
Zhang
,
Q.
, and
Chen
,
Y.
,
2023
, “
Polyimide Dielectrics With Cross-Linked Structure for High-Temperature Film Capacitors
,”
Mater. Today Energy
,
32
, p.
101243
.
24.
Lin
,
Y.
,
Li
,
P.
,
Liu
,
W.
,
Chen
,
J.
,
Liu
,
X.
,
Jiang
,
P.
, and
Huang
,
X.
,
2024
, “
Application-Driven High-Thermal-Conductivity Polymer Nanocomposites
,”
ACS Nano
,
18
(
5
), pp.
3851
3870
.
25.
Hirao
,
T.
,
Onishi
,
M.
,
Yasuda
,
Y.
,
Namba
,
A.
, and
Nakatsu
,
K.
,
2018
, “
EV Traction Inverter Employing Double-Sided Direct-Cooling Technology With SIC Power Device
,”
2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia)
,
Niigata, Japan
,
May 20–24
, pp.
2082
2085
.
26.
Abu-Zama
,
D.
,
Badawi
,
R.
,
Teimor
,
M.
, and
Suciu
,
I.
,
2023
, “
Mechanical Design Considerations for Electric Vehicle Power Electronics
,”
SAE Technical Paper
, 2023-01-0531.
27.
Li
,
Y.
,
Fan
,
T.
,
Li
,
Q.
,
Wen
,
X.
, and
Zhang
,
D.
,
2019
, “
Thermal Analysis of Metallized Film Capacitors Used in Motor Drive Controller
,”
2019 22nd International Conference on Electrical Machines and Systems (ICEMS)
,
Harbin, China
,
Aug. 11–14
, pp.
1
4
.
28.
Mikhaylov
,
Y.
,
Aboelhassan
,
A.
,
Buticchi
,
G.
, and
Galea
,
M.
,
2024
, “
Considerations on the Development of High-Power Density Inverters for Highly Integrated Motor Drives
,”
Electronics
,
13
(
2
), p.
355
.
29.
Wang
,
Z.
,
Luo
,
B.
,
Zhan
,
J.
,
Zhou
,
H.
,
Zhan
,
X.
,
Li
,
T.
,
Ye
,
C.
, and
Tian
,
J.
,
2022
, “
A 200 kw High-Efficiency and High-Power Density XEV Motor Controller Based on Discrete SIC MOSFET Devices
,”
Int. J. Circ. Theory Appl.
,
50
(
9
), pp.
3053
3070
.
30.
Chen
,
Y.
,
Chen
,
K.
,
Dong
,
Y.
, and
Wu
,
X.
,
2022
, “
Bidirectional Symmetrical Parallel Mini-Channel Cold Plate for Energy Efficient Cooling of Large Battery Packs
,”
Energy
,
242
, p.
122553
.
31.
Fan
,
Y.
,
Wang
,
Z.
, and
Fu
,
T.
,
2021
, “
Multi-Objective Optimization Design of Lithium-Ion Battery Liquid Cooling Plate With Double-Layered Dendritic Channels
,”
Appl. Therm. Eng.
,
199
, p.
117541
.
32.
Wang
,
N.
,
Li
,
C.
,
Li
,
W.
,
Huang
,
M.
, and
Qi
,
D.
,
2021
, “
Effect Analysis on Performance Enhancement of a Novel Air Cooling Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
192
, p.
116932
.
33.
Li
,
W.
,
Peng
,
X.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3668
3680
.
34.
Huang
,
L.
,
Yuan
,
T.
,
Wang
,
Y.
,
Guo
,
H.
,
Guo
,
X.
,
Li
,
X.
,
Chang
,
B.
,
Wang
,
Y.
, and
Xi
,
X.
,
2024
, “
Numerical Investigation and Optimization on Thermal Management of a DC-Bus Film Capacitor in Electric Vehicle Using Microchannel Cooling Plates
,”
Appl. Therm. Eng.
,
244
, p.
122695
.
35.
Chen
,
K.
,
Chen
,
Y.
,
Song
,
M.
, and
Wang
,
S.
,
2020
, “
Multi-Parameter Structure Design of Parallel Mini-Channel Cold Plate for Battery Thermal Management
,”
Int. J. Energy Res.
,
44
(
6
), pp.
4321
4334
.
36.
Huang
,
Y.
,
Mei
,
P.
,
Lu
,
Y.
,
Huang
,
R.
,
Yu
,
X.
,
Chen
,
Z.
, and
Roskilly
,
A. P.
,
2019
, “
A Novel Approach for Lithium-Ion Battery Thermal Management With Streamline Shape Mini Channel Cooling Plates
,”
Appl. Therm. Eng.
,
157
, p.
113623
.
37.
Kuang
,
K.
,
Guo
,
X.
,
Li
,
C.
, and
Li
,
X.
,
2024
, “
A Novel Lifetime Estimation Method and Structural Optimization Design for Film Capacitors in EVS Considering Material Aging and Power Losses
,”
IEEE Trans. Device Mater. Reliab.
, pp.
1
1
.
38.
El-Husseini
,
M. H.
,
Venet
,
P.
,
Rojat
,
G.
, and
Joubert
,
C.
,
2002
, “
Thermal Simulation for Geometric Optimization of Metallized Polypropylene Film Capacitors
,”
IEEE Trans. Ind. Appl.
,
38
(
3
), pp.
713
718
.
39.
Fu
,
C.
,
Zhu
,
M.
,
Zhao
,
D.
,
Yu
,
L.
,
Ding
,
Y.
, and
Liu
,
D.
,
2022
, “
Daytime Radiative Cooling Capacity of Nanoparticle on Thermoplastic Polyurethane (TPU) Film
,”
Sol. Energy
,
245
, pp.
322
331
.
40.
Kralik
,
T.
, and
Katsir
,
D.
,
2009
, “
Black Surfaces for Infrared, Aerospace, and Cryogenic Applications
,”
SPIE Proceedings
,
Orlando, FL
,
May 7
, pp.
376
384
.
41.
Chaudhary
,
A.
,
Coppalle
,
A.
,
Godard
,
G.
,
Xavier
,
P.
, and
Vieille
,
B.
,
2023
, “
Phosphor Thermometry for Surface Temperature Measurements of Composite Materials During Fire Test
,”
Int. J. Heat Mass Transfer
,
211
, p.
124215
.
42.
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China
,
2021
,
Capacitors for Power Electronics: GB/T 17702—2021
,
Standards Press of China
,
Beijing, China
.
43.
MacDonald
,
J. R.
,
Schneider
,
M. A.
,
Schalnat
,
M. C.
, and
Ennis
,
J. B.
,
2012
, “
Thermal Modeling of High Temperature Power Conversion Capacitors
,”
2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)
,
San Diego, CA
,
June 3–7
, pp.
256
259
.
44.
Zhang
,
Y.
,
Zuo
,
W.
,
Jiaqiang
,
E.
,
Li
,
J.
,
Li
,
Q.
,
Sun
,
K.
,
Zhou
,
K.
, and
Zhang
,
G.
,
2022
, “
Performance Comparison Between Straight Channel Cold Plate and Inclined Channel Cold Plate for Thermal Management of a Prismatic LiFePO4 Battery
,”
Energy
,
248
, p.
123637
.
45.
Dong
,
G.
,
Jiang
,
H.
,
Zhang
,
D.
,
Ma
,
R.
,
Xia
,
J.
,
Jia
,
W.
, and
Xu
,
X.
,
2024
, “
Parametric Optimization of Rearview Mirror Structure Based on a Multi-Island Genetic Algorithm
,”
J. Phys.: Conf. Ser.
,
2756
(
1
), p.
012054
.
46.
Peng
,
G.
,
Ma
,
L.
,
Hong
,
S.
,
Ji
,
G.
, and
Chang
,
H.
,
2024
, “
Optimization Design and Internal Flow Characteristics Analysis Based on Latin Hypercube Sampling Method
,”
Arab. J. Sci. Eng.
, pp.
1
40
.
47.
Wang
,
N.
,
Li
,
C.
,
Li
,
W.
,
Chen
,
X.
,
Li
,
Y.
, and
Qi
,
D.
,
2021
, “
Heat Dissipation Optimization for a Serpentine Liquid Cooling Battery Thermal Management System: An Application of Surrogate Assisted Approach
,”
J. Energy Storage
,
40
, p.
102771
.
48.
Zuo
,
W.
,
Li
,
F.
,
Li
,
Q.
,
Chen
,
Z.
,
Huang
,
Y.
, and
Chu
,
H.
,
2024
, “
Multi-Objective Optimization of Micro Planar Combustor With Tube Outlet by RSM and NSGA-II for Thermophotovoltaic Applications
,”
Energy
,
291
, p.
130396
.
49.
Moreno
,
G.
,
Narumanchi
,
S.
,
Feng
,
X.
,
Anschel
,
P.
,
Myers
,
S.
, and
Keller
,
P.
,
2022
, “
Electric-Drive Vehicle Power Electronics Thermal Management: Current Status, Challenges, and Future Directions
,”
ASME J. Electron. Packag.
,
144
(
1
), p.
011004
.
You do not currently have access to this content.