The bipolar plate is an important and integral part of the proton exchange membrane (PEM) fuel cell and PEM fuel cell stacks. Currently bipolar plates represent more than 80% by weight and 40% by cost of the fuel cell stack. Traditional materials used for bipolar plates are primarily graphite and metal. Search for alternative materials to improve weight and cost considerations is needed. This paper discusses the results of an investigation of two elastomeric materials being developed for bipolar plate applications. Perceived advantages of the use of elastomers for this application include improved sealability without additional gasket material, reduction in the contact resistance between individual cells, improved formability, and weight reduction. The first elastomer investigated is a two component liquid silicone rubber, and the second is a polyolefin thermoplastic elastomer. These polymer matrix materials are made electrically conductive by the addition of conductive fillers including thermal graphite fibers (Cytec DKD & CKD), high surface area conductive carbon black nanoparticles (Cabot Black Pearls 2000), and graphite flakes (Asbury 4012). Electrical conductivity, processability, and elastic behavior measurements of the composites have been conducted. Some of silicone-graphite fiber composites material exhibit conductivity values comparable to those of the traditional graphite plate materials. Elasticity of all composites is maintained even at high filler concentrations.

1.
Yen
,
C.-Y.
,
Liao
,
S.-H.
,
Lin
,
Y.-F.
,
Hung
,
C.-H.
,
Lin
,
Y.-Y.
, and
Ma
,
C.-C. M.
, 2006, “
Preparation and Properties of High Performance Nanocomposite Bipolar Plate for Fuel Cell
,”
J. Power Sources
0378-7753,
162
, pp.
309
315
.
2.
Kuan
,
H.-C.
,
Ma
,
M. C.-C.
,
Chen
,
K. H.
, and
Chen
,
S.-M.
, 2004, “
Preparation, Electrical, Mechanical and Thermal Properties of Composite Bipolar Plate for a Fuel Cell
,”
J. Power Sources
0378-7753,
134
, pp.
7
17
.
3.
Besmann
,
T. M.
,
Klett
,
J. W.
,
Henry
,
J. J.
, Jr.
, and
Lara-Curzio
,
E.
, 2001, “
Carbon/Carbon Composite Bipolar Plate for PEM Fuel Cells
,” SAE Paper No. 02FCC-14.
4.
Müller
,
A.
,
Kauranen
,
P.
,
Von Ganski
,
A.
, and
Hell
,
B.
, 2006, “
Injection Moulding of Graphite Composite Bipolar Plates
,”
J. Power Sources
0378-7753,
154
, pp.
467
471
.
5.
Mighri
,
F.
,
Huneault
,
M. A.
, and
Champagne
,
M. F.
, 2004, “
Electrically Conductive Thermoplastic Blends for Injection and Compression Molding of Bipolar Plates in the Fuel Cell Application
,”
Polym. Eng. Sci.
0032-3888,
40
(
9
), pp.
1755
1765
.
6.
Wu
,
M.
, and
Shaw
,
L.
, 2005,
Electrical and Mechanical Behaviors of Carbon Nanotube-Filled Polymer Blends
,
Wiley InterScience
,
New York
.
7.
Greenberg
,
E. R.
,
May
,
M. N.
,
Wise
,
J.
, and
Gadala-Maria
,
F.
, 2005, “
Effect of Shear on the Electrical Conductivity of Suspensions of Graphite in an Unsaturated Polyester Resin
,”
Polym. Eng. Sci.
, 0032-3888
45
, pp.
1540
1545
.
8.
Huang
,
J.
,
Baird
,
D. G.
, and
McGrath
,
J. E.
, 2005, “
Development of Fuel Cell Bipolar Plates From Graphite Filled Wet-Lay Thermoplastic Composite Materials
,”
J. Power Sources
0378-7753,
150
, pp.
110
119
.
9.
Hermann
,
A.
,
Chaudhuri
,
T.
, and
Spagnol
,
P.
, 2005, “
Bipolar Plates for PEM Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
1297
1302
.
10.
Mehta
,
V.
, and
Cooper
,
J. S.
, 2003, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
0378-7753,
114
, pp.
32
53
.
11.
Bin
,
Z.
,
Bingchu
,
M.
,
Chunhui
,
S.
, and
Runzhang
,
Y.
, 2006, “
Study on the Electrical and Mechanical Properties of Polyvinylidene Fluoride/Titanium Silicon Carbide Composite Bipolar Plates
,”
J. Power Sources
0378-7753,
161
(
2
), pp.
997
1001
.
12.
Frisch
,
L.
, 2001, “
PEM Fuel Cell Stack Sealing Using Silicone Elastomers
,”
Sealing Technology
,
2001
, pp.
7
9
.
13.
GE Silicone Technical Data
, 2007, www.gesilicones.comwww.gesilicones.com.
14.
Strong
,
B. A.
, 2006,
Plastics Materials and Processing
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Advanced Elastomer Systems (Division of ExxonMobil Chemical) Technical Data
, 2007, www.santoprene.comwww.santoprene.com.
16.
Cytec Engineered Materials Data Sheet
, 2007, www.cytec.comwww.cytec.com.
17.
Knite
,
M.
,
Klemenok
,
I.
,
Shakale
,
G.
,
Teteris
,
V.
, and
Zicans
,
J.
, 2007, “
Polyisoprene-Carbon Nanocompounds for Application in Multifunctional Sensors
,”
J. Alloys Compd.
0925-8388,
434–435
, pp.
850
853
.
18.
Das
,
N. C.
,
Chaki
,
T. K.
, and
Khastgir
,
D.
, 2002, “
Effect of Axial Stretching on Electrical Resistivity of Short Carbon Fiber and Carbon Black Filled Conductive Rubber Composites
,”
Polym. Int.
0959-8103,
51
, pp.
156
163
.
19.
Yue
,
Z.
, and
Economy
,
J.
, 2006, “
Synthesis of Highly Mesoporous Carbon Pellets From Carbon Black and Polymer Binder by Chemical Activation
,”
Microporous Mesoporous Mater.
1387-1811,
96
, pp.
314
320
.
20.
Barbir
,
F.
, 2005,
PEM Fuel Cells: Theory and Practice
,
Elsevier
,
New York
.
21.
23.
Blunk
,
R. H. J.
,
Lisi
,
D. J.
,
Yoo
,
Y.-E.
, and
Tucker
,
C. L.
, III
, 2003, “
Enhanced Conductivity of Fuel Cell Plates Through Controlled Fiber Orientation
,”
AIChE J.
0001-1541,
49
, pp.
18
29
.
24.
Bigg
,
D. M.
, 1983, “
Rheological Behavior of Highly Filled Polymer Melts
,”
Polym. Eng. Sci.
0032-3888,
23
, pp.
206
210
.
25.
Thomas
,
D. G.
, 1965, “
Transport Characteristics of Suspension: VIII. A Note on the Viscosity of Newtonian Suspensions of Uniform Spherical Particles
,”
J. Colloid Sci.
0095-8522,
20
, pp.
267
277
.
26.
Tadmor
,
Z.
, and
Gogos
,
C. G.
, 2006,
Principles of Polymer Processing
,
Wiley Interscience
,
New York
, pp
638
643
.
You do not currently have access to this content.