The elastomeric materials used as seals and gaskets in polymer electrolyte membrane (PEM) fuel cells are exposed to acidic environment, humid air, and hydrogen, and subjected to mechanical compressive load. The long-term mechanical and chemical stability of these materials is critical to both sealing and the electrochemical performance of the fuel cell. In this paper, mechanical degradation of two elastomeric materials, Silicone S and Silicone G, which are potential gasket materials for PEM fuel cells, was investigated. Test samples were subjected to various compressive loads to simulate the actual loading in addition to soaking in a simulated PEM fuel cell environment. Two temperatures, 80°C and 60°C, were selected and used in this study. Mechanical properties of the samples before and after exposure to the environment were studied by microindentation. Indentation load, elastic modulus, and hardness were obtained from the loading and unloading curves. Indentation deformation was studied using Hertz contact model. Dynamic mechanical analysis was conducted to verify the elastic modulus obtained by Hertz contact model. It was found that the mechanical properties of the samples changed considerably after exposure to the simulated environment over time. The temperature and the applied compressive load play a significant role in the mechanical degradation. The microindentation method is proved to provide a simple and efficient way to evaluate the mechanical properties of gasket materials.

1.
ASTM D412, 1998, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elasomers-Tension.
2.
ASTM D6147, 1997, Test Method for Vulcanized Rubber and Thermoplastic Elastomer-Determination of Force Decay (Stress Relaxation) in Compression.
3.
ASTM D2240, 2005, Standard Test Method for Rubber Property—Durometer Hardness.
4.
Giannakopoulos
,
A. E.
, and
Triantafyllou
,
A.
, 2007, “
Spherical Indentation of Incompressible Rubber-Like Materials
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
1196
1211
.
5.
Li
,
X.
,
An
,
Y. H.
,
Wu
,
Y. D.
,
Song
,
Y. C.
,
Chao
,
Y. J.
, and
Chien
,
C. H.
, 2007, “
Microindentation Test for Assessing the Mechanical Properties of Cartilaginous Tissues
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
80B
, pp.
25
31
.
6.
Petit
,
F.
,
Vandeneede
,
V.
, and
Cambier
,
F.
, 2007, “
Relevance of Instrumented Microindentation for the Assessment of Hardness and Young’s Modulus of Brittle Materials
,”
Mater. Sci. Eng., A
0921-5093,
456
(
1–2
), pp.
252
260
.
7.
Boersma
,
A.
,
Soloukhin
,
V. A.
,
Brokken-Zijp
,
J. C. M.
, and
With
,
G. D.
, 2004, “
Load and Depth Sensing Indentation as a Tool to Monitor a Gradient in the Mechanical Properties Across a Polymer Coating: A Study of Physical and Chemical Aging Effects
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
42
, pp.
1628
1639
.
8.
Kohl
,
J. G.
, and
Bolstes
,
R. N.
, 2001, “
A Study on the Elastic Modulus of Silicone Duplex or Bi-Layer Coatings Using Micro-Indentation
,”
Prog. Org. Coat.
0300-9440,
41
, pp.
135
141
.
9.
Li
,
Z.
,
Brokken-Zijp
,
J. C. M.
, and
With
,
G. D.
, 2004, “
Determination of the Elastic Moduli of Silicone Rubber Coatings and Films Using Depth-Sensing Indentation
,”
Polymer
0032-3861,
45
, pp.
5403
5406
.
10.
Scott
,
O. N.
,
Begley
,
M. R.
,
Komaragiri
,
U.
, and
Mackin
,
T. J.
, 2004, “
Indentation of Freestanding Circular Elastomer Films Using Spherical Indenters
,”
Acta Mater.
1359-6454,
52
(
16
), pp.
4877
4885
.
11.
Begley
,
M. R.
, and
Mackin
,
T. J.
, 2004, “
Spherical Indentation of Freestanding Circular Thin Films in the Membrane Regime
,”
J. Mech. Phys. Solids
0022-5096,
52
(
9
), pp.
2005
2023
.
12.
Lim
,
Y. Y.
, and
Chaudhri
,
M. M.
, 2006, “
Indentation of Elastic Solids With a Rigid Vickers Pyramidal Indenter
,”
Mech. Mater.
0167-6636,
38
, pp.
1213
1228
.
13.
Vriend
,
N. M.
, and
Kren
,
A. P.
, 2004, “
Determination of the Viscoelastic Properties of Elastomeric Materials by the Dynamic Indentation Method
,”
Polym. Test.
0142-9418,
23
, pp.
369
375
.
14.
Gupta
,
S.
,
Carrillo
,
F.
,
Li
,
C.
,
Pruitt
,
L.
, and
Puttlitz
,
C.
, 2007, “
Adhesive Forces Significantly Affect Modulus Determination of Soft Polymeric Materials in Nanoindentation
,”
Mater. Lett.
0167-577X,
61
, pp.
448
451
.
15.
Yin
,
Y.
,
Ling
,
S. F.
, and
Liu
,
Y.
, 2004, “
A Dynamic Indentation Method for Characterizing Soft Incompressible Viscoelastic Materials
,”
Mater. Sci. Eng., A
0921-5093,
379
, pp.
334
340
.
16.
Mina
,
M. F.
,
Ania
,
F.
,
Balta Calleja
,
F. J.
, and
Asano
,
T.
, 2004, “
Microhardness Studies of PMMA/Natural Rubber Blends
,”
J. Appl. Polym. Sci.
0021-8995,
91
(
1
), pp.
205
210
.
17.
Lim
,
Y. Y.
, and
Chaudhri
,
M. M.
, 2004, “
Indentation of Elastic Solids With Rigid Cones
,”
Philos. Mag.
1478-6435,
84
(
27
), pp.
2877
2903
.
18.
Lim
,
Y. Y.
, and
Chaudhri
,
M. M.
, 2003, “
Experimental Investigations of the Normal Loading of Elastic Spherical and Conical Indenters on to Elastic Flats
,”
Philos. Mag.
1478-6435,
83
(
30
), pp.
3427
3462
.
19.
Zhu
,
S.
,
Chan
,
C.
, and
Mai
,
Y.
, 2004, “
Micromechanical Properties on the Surface of PVC/SBR Blends Spatially Resolved by a Nanoindentation Technique
,”
Polym. Eng. Sci.
0032-3888,
44
(
3
), pp.
609
614
.
20.
Busfield
,
J. J. C.
, and
Thomas
,
A. G.
, 1999, “
Indentation Tests on Elastomer Blocks
,”
Rubber Chem. Technol.
0035-9475,
72
(
5
), pp.
876
894
.
21.
Vanlandingham
,
M. R.
,
Chang
,
N. K.
,
White
,
C. C.
, and
Chang
,
S. H.
, 2005, “
Viscoelastic Characterization Polymers Using Instrumented Indentation. I. Quasi-Static Testing
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
(
14
), pp.
1794
1811
.
22.
Tan
,
J.
,
Chao
,
Y. J.
,
Li
,
X.
, and
Van Zee
,
J. W.
, 2007, “
Degradation of Silicone Rubber Under Compression in a Simulated PEM Fuel Cell Environment
,”
J. Power Sources
0378-7753,
172
, pp.
782
789
.
23.
Schulze
,
M.
,
Knori
,
T.
,
Schneider
,
A.
, and
Gulzow
,
E.
, 2004, “
Degradation of Sealings for PEFC Test Cells During Fuel Cell Operation
,”
J. Power Sources
0378-7753,
127
(
1–2
), pp.
222
229
.
24.
Dillard
,
D. A.
,
Gao
,
S.
,
Ellis
,
M. W.
,
Lesko
,
J. J.
,
Dillard
,
J. G.
,
Sayre
,
J.
, and
Vijayendran
,
B.
, 2004, “
Seals and Sealants in PEM Fuel Cell Environments: Material, Design and Durability Challenges
,”
Second International Conference on Fuel Cell Science, Engineering and Technology
,
Rochester, NY
, pp.
553
560
.
25.
Mark
,
J.
,
Ngai
,
K.
,
Graessley
,
W.
,
Mandelkern
,
L.
,
Samulski
,
E.
,
Koenig
,
J.
, and
Wignall
,
G.
, 2004,
Physical Properties of Polymers
,
Cambridge University Press
,
Cambridge
.
26.
Ferry
,
J. D.
, 1961,
Viscoelastic Properties of Polymers
,
Wiley
,
New York
.
27.
Mennard
,
K. P.
, 1999,
Dynamic Mechanical Analysis: A Practical Introduction
,
CRC
,
New York
.
28.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
29.
Tan
,
J.
,
Chao
,
Y. J.
,
Van Zee
,
J. W.
, and
Lee
,
W. K.
, 2007, “
Degradation of Elastic Gasket Materials in PEM Fuel Cells
,”
Mater. Sci. Eng., A
0921-5093,
445–446
, pp.
669
675
.
30.
Li
,
X.
, and
Bhushan
,
B.
, 2002, “
A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications
,”
Mater. Charact.
1044-5803,
48
, pp.
11
36
.
31.
Bhushan
,
B.
, and
Li
,
X.
, 2003, “
Nanomechanical Characterization of Solid Surfaces and Thin Films
,”
Int. Mater. Rev.
0950-6608,
48
(
3
), pp.
125
164
.
32.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
(
6
), pp.
1564
1580
.
You do not currently have access to this content.