The real market penetration of polymer electrolyte fuel cells is hindered by the high cost of this technology mainly due to the expensive platinum catalyst. Two approaches are followed to reduce the cost: one way is to increase the Pt utilization efficiency reducing at the same time the total load and the other way is to increase the catalytic activity of the catalyst/support assembly. In this work, the increase of utilization efficiency is addressed by optimizing the catalyst distribution on the uppermost layer of the electrode via electrodeposition and sputter deposition, while the improvement of the catalyst activity is pursued by nanostructuring the catalysts and the carbon-based supports. A very low Pt loading (0.006mgcm2) was obtained by sputter deposition on electrodes that exhibited a mass specific activity for methanol oxidation reaction better than a commercial product. Carbon nanofibers used as catalyst support of electrodeposited platinum nanoparticles resulted in improved mass specific activity and long term stability compared to conventional carbon-based supports. Finally, PtAu alloys developed by sputter deposition were found more efficient than commercial PtRu catalyst for the methanol oxidation reaction. In conclusion, polymer electrolyte membrane fuel cell electrode based on nanomaterials, developed by combining physical and chemical deposition processes, showed outstanding electrochemical performance.

1.
Shen
,
P. K.
, 2008,
PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamental and Applications
,
J.
Zhang
, ed.,
Springer
,
New York
.
2.
Paoletti
,
C.
,
Cemmi
,
A.
,
Giorgi
,
L.
,
Giorgi
,
R.
,
Pilloni
,
L.
,
Serra
,
E.
, and
Pasquali
,
M.
, 2008, “
Electro-Deposition on Carbon Black and Carbon Nanotubes of Pt Nanostructured Catalysts for Methanol Oxidation
,”
J. Power Sources
0378-7753,
183
, pp.
84
91
.
3.
Alvisi
,
M.
,
Galtieri
,
G.
,
Giorgi
,
L.
,
Giorgi
,
R.
,
Serra
,
E.
, and
Signore
,
M. A.
, 2005, “
Sputter Deposition of Pt Nanoclusters and Thin Films on PEM Fuel Cell Electrodes
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
1325
1329
.
4.
Lee
,
K.
,
Zhang
,
J.
,
Wang
,
H.
, and
Wilkinson
,
D. P.
, 2006, “
Progress in the Synthesis of Carbon Nanotube- and Nanofiber-Supported Pt Electrocatalysts for PEM Fuel Cell Catalysis
,”
J. Appl. Electrochem.
0021-891X,
36
, pp.
507
522
5.
Dai
,
H.
, 2002, “
Carbon Nanotubes: Opportunities and Challenges
,”
Surf. Sci.
0039-6028,
500
, pp.
218
241
.
6.
De Jong
,
K. P.
, and
Geus
,
J. W.
, 2000, “
Carbon Nanofibers: Catalytic Synthesis and Applications
,”
Catal. Rev. - Sci. Eng.
0161-4940,
42
, pp.
481
510
.
7.
Yoon
,
S. -H.
,
Lim
,
S.
,
Hong
,
S. -H.
,
Qiao
,
W.
,
Whitehurst
,
D. D.
,
Mochida
,
I.
,
An
,
B.
, and
Yokogawa
,
K.
, 2005, “
A Conceptual Model for the Structure of Catalytically Grown Carbon Nano-Fibers
,”
Carbon
0008-6223,
43
, pp.
1828
1838
.
8.
Li
,
Z.
,
Cui
,
X.
,
Zhang
,
X.
,
Wang
,
Q.
,
Shao
,
Y.
, and
Lin
,
Y.
, 2009, “
Pt/Carbon Nanofiber Nanocomposites as Electrocatalysts for Direct Methanol Fuel Cells: Prominent Effects of Carbon Nanofiber Nanostructures
,”
J. Nanosci. Nanotechnol.
1533-4880,
9
, pp.
2316
2323
.
9.
Leng
,
Y. -J.
,
Wang
,
X.
, and
Hsing
,
I. -M.
, 2002, “
Assessment of CO-Tolerance for Different Pt-Alloy Anode Catalysts in a Polymer Electrolyte Fuel Cell Using ac Impedance Spectroscopy
,”
J. Electroanal. Chem.
0022-0728,
528
, pp.
145
152
.
10.
Antolini
,
E.
,
Giorgi
,
L.
,
Pozio
,
A.
, and
Passalacqua
,
E.
, 1999, “
Influence of Nafion Loading in the Catalyst Layer of Gas-Diffusion Electrodes for PEFC
,”
J. Power Sources
0378-7753,
77
, pp.
136
142
.
11.
Dikonimos
,
M. Th.
,
Giorgi
,
R.
,
Lisi
,
N.
,
Pilloni
,
L.
,
Salernitano
,
E.
,
De Riccardis
,
M. F.
, and
Carbone
,
D.
, 2005, “
Carbon Nanotubes Growth on PAN and Pitch-Based Carbon Fibres by HFCVD
,”
Fullerenes, Nanotubes, Carbon Nanostruct.
1536-383X,
13
(
1
), pp.
383
392
.
12.
Giorgi
,
L.
,
Dikonimos
,
M. Th.
,
Giorgi
,
R.
,
Lisi
,
N.
, and
Salernitano
,
E.
, 2007, “
Electrochemical Properties of Carbon Nanowalls Synthesized by HF-CVD
,”
Sens. Actuators B
0925-4005,
126
, pp.
144
152
.
13.
Zhao
,
D.
, and
Xu
,
B. Q.
, 2006, “
Enhancement of Pt Utilization in Electrocatalysts by Using Gold Nanoparticles
,”
Angew. Chem.
0044-8249,
118
, pp.
5077
5081
.
14.
Bett
,
J.
,
Kinoshita
,
K.
,
Routsis
,
K.
, and
Stonehart
,
P.
, 1973, “
A Comparison of Gas-Phase and Electrochemical Measurements for Chemisorbed Carbon Monoxide and Hydrogen on Platinum Crystallites
,”
J. Catal.
0021-9517,
29
, pp.
160
168
.
15.
Dikonimos
,
Th.
,
Giorgi
,
R.
,
Lisi
,
N.
,
Salernitano
,
E.
,
Gagliardi
,
S.
,
De Riccardis
,
M. F.
,
Carbone
,
D.
,
Conte
,
G.
,
Rossi
,
M. C.
,
Carta
,
S.
, and
Rufoloni
,
A.
, 2008, “
Field Emission Properties of Carbon Nanofibres With Different Morphology and Orientation
,”
Proceedings of EL2008 (14th International Conference Inorganica and Organic Electroluminescence)
, Bagni di Tivoli, Rome, Sept. 8–12,
G.
Baldacchini
,
R. M.
Montereali
, and
M. A.
Vincenti
, eds., pp.
197
199
.
16.
Guo
,
J.
,
Sun
,
G.
,
Sun
,
S.
,
Yan
,
S.
,
Yang
,
W.
,
Qi
,
J.
,
Yan
,
Y.
, and
Xin
,
Q.
, 2007, “
Polyol-Synthesized PtRu/C and PtRu Black for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
168
, pp.
299
306
.
17.
Petrii
,
O. A.
, 2008, “
PtRu Electrocatalysts for Fuel Cells: A Representative Review
,”
J. Solid State Electrochem.
1432-8488,
12
, pp.
609
642
.
18.
Park
,
I. S.
,
Lee
,
K. S.
,
Jung
,
D. S.
,
Park
,
H. Y.
, and
Sung
,
Y. E.
, 2007, “
Electrocatalytic Activity of Carbon-Supported Pt–Au Nanoparticles for Methanol Electro-Oxidation
,”
Electrochim. Acta
0013-4686,
52
, pp.
5599
5605
.
19.
Haruta
,
M.
, 1997, “
Size- and Support-Dependency in the Catalysis of Gold
,”
Catal. Today
0920-5861,
36
, pp.
153
166
.
20.
Laurence
,
D. B.
, 2004, “
Scope for New Application for Gold Arising From the Electrocatalytic Behavior of Its Metastable Surface States
,”
Gold Bull.
1027-8591,
37
, pp.
125
135
.
You do not currently have access to this content.