Abstract

The ball-on-ring (BoR) test, one of the most popular biaxial bending tests, is thoroughly investigated in this study for determining the bending strength of thin silicon dies. The application of this test method with a linear theory to the thin dies is also reevaluated using a nonlinear finite element method (NFEM) by taking into account the geometric nonlinearities, including large-deflection (global) and contact (local) nonlinearities. Mechanics of the BoR test is also discussed in terms of geometric linearity and nonlinearity. It is found that the bending strength calculated by the existing linear theory for the BoR test is still valid for the nonthin die specimens, but not for thin ones. The reason is that the thin-die specimens in the test suffer a contact-nonlinearity effect, due to a maximum applied stress moving away from the loading pin center during the loading process. The global geometric nonlinear (large-deflection) behavior occurring in the three-point bending test is not observed in the test. For applications, the fitting equations of the maximum stress in terms of applied load are proposed based on the NFEM results. Those fitting equations only depend on the specimen thickness, the head radius of the loading pin, and the elastic modulus of the specimen, but not on the specimen radius, a supporting ring radius and the head radius of the ring. The 110 μm and 160 μm-thick silicon dies in the BoR test are also demonstrated with the related fitting equations.

References

1.
Burghartz
,
J.
,
2011
,
Ultra-Thin Chip Technology and Applications
,
Springer Science & Business Media
, New York.
2.
Gambino
,
J. P.
,
2013
, “
Thin Silicon Wafer Processing and Strength Characterization
,” The 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (
IPFA
), Suzhou, China, July 15–19, pp.
199
207
.10.1109/IPFA.2013.6599153
3.
Gupta
,
S.
,
Navaraj
,
W. T.
,
Lorenzelli
,
L.
, and
Dahiya
,
R.
,
2018
, “
Ultra-Thin Chips for High-Performance Flexible Electronics
,”
NPJ Flex Electron.
,
2
(
1
), p.
8
.10.1038/s41528-018-0021-5
4.
Wu
,
T. Y.
,
Tsukada
,
Y.
, and
Chen
,
W. T.
,
1996
, “
Materials and Mechanics Issues in Flip-Chip Organic Packaging
,” Proceedings of the 46th Electronics and Computer Technology Conference (
ECTC
), Orlando, FL, May 28–31, pp.
524
533
.10.1109/ECTC.1996.517439
5.
Tsai
,
M. Y.
,
Hsu
,
C. H.
, and
Wang
,
C. T.
,
2004
, “
Investigation of Thermo-Mechanical Behaviors of Flip Chip BGA in IC Packaging
,”
IEEE Trans. Compon., Packaging, Technol., Part A
,
27
(
3
), pp.
568
576
.10.1109/TCAPT.2004.831817
6.
Yeung
,
B. H.
, and
Lee
,
T. Y. T.
, June
2003
, “
An Overview of Experimental Methodologies and Their Applications for Die Strength Measurement
,”
IEEE Trans. Compon. Packaging Technol.
,
26
(
2
), pp.
423
428
.10.1109/TCAPT.2003.815111
7.
Tsai
,
M. Y.
,
Chen
,
C. H.
, and
Lin
,
C. S.
,
2006
, “
Test Methods for Silicon Die Strength
,”
ASME, J. Electron. Packag.
,
128
(
4
), pp.
419
426
.10.1115/1.2351907
8.
Tsai
,
M. Y.
, and
Lin
,
C. S.
, April
2007
, “
Testing and Evaluation of Silicon Die Strength
,”
IEEE Trans. Electron. Packaging Manuf.
,
30
(
2
), pp.
106
114
.10.1109/TEPM.2007.899072
9.
Tsai
,
M. Y.
,
Chen
,
H. J.
, and
Yeh
,
J. H.
,
2019
, “
Evaluation of Bending Strength of Window Glass Substrate With Considerations of Uni- and Bi-Axial Loading, and Free Edge Stresses
,”
ASME, J. Electron. Packag.
,
141
(
4
), p.
041007
.10.1115/1.4044961
10.
Schoenfelder
,
S.
,
Ebert
,
M.
,
Landesberger
,
C.
,
Bock
,
K.
, and
Bagdahn
,
J.
,
2007
, “
Investigations of the Influence of Dicing Techniques on the Strength Properties of Thin Silicon
,”
Microelectron. Reliab.
,
47
(
2–3
), pp.
168
178
.10.1016/j.microrel.2006.09.002
11.
Liu
,
Z.
,
Huang
,
Y.
,
Xiao
,
L.
,
Tang
,
P.
, and
Yin
,
Z.
,
2015
, “
Nonlinear Characteristics in Fracture Strength Test of Ultrathin Silicon Die
,”
Semicond. Sci. Technol. No
,
30
(
4
), p.
045005
.10.1088/0268-1242/30/4/045005
12.
Tsai
,
M. Y.
,
Huang
,
P. S.
,
Yeh
,
J. H.
,
Liu
,
H. Y.
,
Chao
,
Y. C.
,
Tsai
,
F.
,
Chen
,
D. L.
,
Shih
,
M. K.
, and
Tarng
,
D.
,
2019
, “
Evaluation of Three-Point Bending Strength of Thin Silicon Die With a Consideration of Geometric Nonlinearity
,”
IEEE Trans. Device Mater. Reliab.
,
19
(
4
), pp.
615
621
. Dec.10.1109/TDMR.2019.2937988
13.
Kirstein
,
A. F.
, and
Woolley
,
R. M.
,
1967
, “
Symmetrical Bending of Thin Circular Elastic Plates on Equally Spaced Point Supports
,”
J. Res. Natl. Bur. Stand
,
71C
(
1
), pp.
1
10
.10.6028/jres.071C.002
14.
Shetty
,
D. K.
,
Rosenfield
,
A. R.
,
Maguire
,
P.
,
Bansal
,
G. K.
, and
Duckworth
,
W. H.
,
1980
, “
Biaxial Flexure Test for Ceramics
,”
Am. Ceram. Soc. Bull.
,
59
(
12
), pp.
1193
1197
.https://www.researchgate.net/publication/236381914_Biaxial_Flexure_Test_for_Ceramics
15.
With
,
G.
, and
Wagemans
,
H. H. M.
,
1989
, “
Ball-on-Ring Test Revisited
,”
J. Am. Ceram. Soc.
,
72
(
8
), pp.
1538
1541
.10.1111/j.1151-2916.1989.tb07702.x
16.
Schonfelder
,
S.
,
Ebert
,
M.
, and
Bagdahn
,
J.
,
2006
, “
Influence of the Thickness of Silicon Dies on Strength
,”
The Seventh International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems
, EuroSim, Como, Italy, Apr. 24–26, p. 1.10.1109/ESIME.2006.1644045
17.
Huang
,
P. S.
, and
Tsai
,
M. Y.
,
2009
, “
Improved Ball-on-Elastic-Pad and Ball-on-Hole Tests for Silicon Die Strength
,” The Eighth International Microsystems, Packaging, Assembly and Circuits Technology Conference (
IMPACT2009
), Taipei, Taiwan, Oct. 21–23, pp.
518
521
.10.1109/IMPACT.2009.5382233
18.
Zhao
,
J.-H.
,
Tellkamp
,
J.
,
Gupta
,
V.
, and
Edwards
,
D. R.
,
2009
, “
Experimental Evaluations of the Strength of Silicon Die by 3-Point-Bend Versus Ball-on-Ring Tests
,”
IEEE Trans. Electron. Packag. Manuf.
,
32
(
4
), pp.
248
255
.10.1109/TEPM.2009.2028329
19.
Chae
,
S.-H.
,
Zhao
,
J.-H.
,
Edwards
,
D. R.
, and
Ho
,
P. S.
,
2010
, “
Effect of Dicing Technique on the Fracture Strength of Si Dies With Emphasis on Multimodal Failure Distribution
,”
IEEE Trans. Device Mater. Reliab
,
10
(
1
), pp.
149
156
.10.1109/TDMR.2009.2037141
20.
Chae
,
S.-H.
,
Zhao
,
J.-H.
,
Edwards
,
D. R.
, and
Ho
,
P. S.
,
2010
, “
Verification of Ball-on-Ring Test Using Finite Element Analysis
,”
The12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, June 2–5. 10.1109/ITHERM.2010.5501307
21.
Jeon
,
E.-B.
,
Park
,
J.-D.
,
Song
,
J. H.
,
Lee
,
H. J.
, and
Kim
,
H.-S.
,
2012
, “
Bi-Axial Fracture Strength Characteristic of an Ultrathin Flash Memory Chip
,”
J. Micromech. Microeng.
,
22
(
10
), p.
105014
.10.1088/0960-1317/22/10/105014
22.
Barnat
,
S.
,
Fremont
,
H.
,
Gracia
,
A.
, and
Cadalen
,
E.
,
2012
, “
Evaluation by Three-Point-Bend and Ball-on-Ring Tests of Thinning Process on Silicon Die Strength
,”
Microelectron. Reliab.
,
52
(
9–10
), pp.
2278
2282
.10.1016/j.microrel.2012.06.093
23.
Naumann
,
F.
,
Mittag
,
M.
,
Bernach
,
M.
, and
Petzold
,
M.
,
2016
, “
Probabilistic Strength Characterization of Thin Semiconductor Devices for Power Electronic Applications
,” The Ninth International Conference on Integrated Power Electronics System (
CIPS 2016
), Nuremberg, Germany, Mar. 8–10, pp.
1
5
.https://ieeexplore.ieee.org/document/7736733
24.
Marks
,
M. R.
,
Hassan
,
Z.
, and
Cheong
,
K. Y.
,
2014
, “
Characterization Methods for Ultrathin Wafer and Die Quality: A Review
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
4
(
12
), pp.
2042
2057
.10.1109/TCPMT.2014.2363570
25.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Application
,”
ASME J. Appl. Mech.
,
4
(
4
), pp.
305
331
.
26.
Abernethy
,
R. B.
,
2010
, “
The New Weibull Handbook
,”
Reliability and Statistical Analysis for Predicting Life, Safety, Supportability, Risk, Cost and Warranty Claims
, 5th ed.,
Open Library Bot
, Online.
27.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
,
New York
.
28.
Kirstein
,
A. F.
,
Pell
,
W. H.
,
Woolley
,
R. M.
, and
Davis
,
L. J.
,
1966
, “
Deflection of Centrally Loaded Thin Circular Elastic Plates on Equally Spaced Point Supports
,”
J. Res. Natl. Bur. Stand., Sect. C
,
70C
(
4
), pp.
227
244
.10.6028/jres.070C.022
29.
Westergaard
,
H. M.
,
1926
, “
Stresses in Concrete Pavements Computed by Theoretical Analysis
,”
Public Roads
,
7
(
2
), pp.
25
35
. http://worldcat.org/oclc/1586080
30.
Tsai
,
M. Y.
,
Yeh
,
J. H.
,
Huang
,
P. S.
,
Chen
,
D. L.
,
Shih
,
M. K.
, and
Tarng
,
D.
,
2020
, “
Geometric Nonlinear Effect on Biaxial Bending Strength of Thin Silicon Die in the PoEF Test
,”
IEEE Trans. Device Mater. Reliab.
,
20
(
2
), pp.
442
451
.10.1109/TDMR.2020.2987010
You do not currently have access to this content.