Abstract

Thermomechanical reliability assessment for sintered silver is a crucial issue as sintered silver is a promising candidate of die-attachment materials adopted for power devices. In this paper, the nano-indentation tests are performed for sintered silver in typical die-attach interconnection under different thermal cycles. Based on thermal cycling test, the Young's modulus and hardness of sintered silver layer have been presented. It is found that the Young's modulus and hardness of sintered silver layer changes slightly although the microstructure of sintered silver also presents some variations. The stress and strain curves for different thermal cycling tests of sintered silver are also given based on reverse analysis of nano-indentation. The results show that the elastoplastic constitutive equations change significantly after thermal cycling tests, and the yielding stress decreases remarkably after 70 thermal cycles. The experimental investigation also shows that the cracking behaviors of sintered silver depend on its geometry characteristics, which implies that the possible optimization of sintered silver layer could enhance its thermomechanical performance.

References

1.
Siow
,
K. S.
,
2014
, “
Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?
,”
J. Electron. Mater.
,
43
(
4
), pp.
947
961
.10.1007/s11664-013-2967-3
2.
Chen
,
T. F.
, and
Siow
,
K. S.
,
2021
, “
Comparing the Mechanical and Thermal–Electrical Properties of Sintered Copper (Cu) and Sintered Silver (Ag) Joints
,”
J. Alloys Compd.
,
866
, p.
158783
.10.1016/j.jallcom.2021.158783
3.
Wang
,
M.
,
Mei
,
Y. H.
,
Jin
,
J.
,
Chen
,
S.
,
Li
,
X.
, and
Lu
,
G. Q.
,
2021
, “
Pressureless Sintered-Silver Die-Attach at 180 °C for Power Electronic Packaging
,”
IEEE Trans. Power Electron.
,
36
(
11
), pp.
12141
12145
.10.1109/TPEL.2021.3074853
4.
Suzuki
,
T.
,
Terasaki
,
T.
,
Kawana
,
Y.
,
Ishikawa
,
D.
,
Nishimura
,
M.
,
Nakako
,
H.
, and
Kurafuchi
,
K.
,
2016
, “
Effect of Manufacturing Process on Micro-Deformation Behavior of Sintered-Silver Die-Attach Material
,”
IEEE Trans. Device Mater. Reliab.
,
16
(
4
), pp.
588
596
.10.1109/TDMR.2016.2614510
5.
Wereszczak
,
A. A.
,
Vuono
,
D. J.
,
Wang
,
H.
,
Ferber
,
M. K.
, and
Liang
,
Z.
,
2012
, “
Properties of Bulk Sintered Silver as a Function of Porosity (No. ORNL/TM-2012/130)
,” Oak Ridge National Lab. (ORNL), Oak Ridge, TN.
6.
Zhao
,
S.
,
Dai
,
Y.
,
Qin
,
F.
,
Li
,
Y.
,
Liu
,
L.
,
Zan
,
Z. T.
,
An
,
P.
,
Chen
,
P.
,
Gong
,
Y.
, and
Wang
,
Y.
,
2021
, “
On Mode II Fracture Toughness of Sintered Silver Based on End-Notch Flexure (ENF) Test Considering Various Sintering Parameters
,”
Mater. Sci. Eng.: A
, 823, p.
141729
.10.1016/j.msea.2021.141729
7.
Carr
,
J.
,
Milhet
,
X.
,
Gadaud
,
P.
,
Boyer
,
S. A. E.
,
Thompson
,
G. E.
, and
Lee
,
P.
,
2015
, “
Quantitative Characterization of Porosity and Determination of Elastic Modulus for Sintered Micro-Silver Joints
,”
J. Mater. Process. Technol.
,
225
, pp.
19
23
.10.1016/j.jmatprotec.2015.03.037
8.
Caccuri
,
V.
,
Milhet
,
X.
,
Gadaud
,
P.
,
Bertheau
,
D.
, and
Gerland
,
M.
,
2014
, “
Mechanical Properties of Sintered Ag as a New Material for Die Bonding: Influence of the Density
,”
J. Electron. Mater.
,
43
(
12
), pp.
4510
4514
.10.1007/s11664-014-3458-x
9.
Chua
,
S. T.
, and
Siow
,
K. S.
,
2016
, “
Microstructural Studies and Bonding Strength of Pressureless Sintered Nano-Silver Joints on Silver, Direct Bond Copper (DBC) and Copper Substrates Aged at 300 C
,”
J. Alloys Compd.
,
687
, pp.
486
498
.10.1016/j.jallcom.2016.06.132
10.
Chen
,
C.
, and
Suganuma
,
K.
,
2019
, “
Microstructure and Mechanical Properties of Sintered Ag Particles With Flake and Spherical Shape From Nano to Micro Size
,”
Mater. Des.
,
162
, pp.
311
321
.10.1016/j.matdes.2018.11.062
11.
Yao
,
Y.
,
Huang
,
Q.
, and
Wang
,
S.
,
2020
, “
Effects of Porosity and Pore Microstructure on the Mechanical Behavior of Nanoporous Silver
,”
Mater. Today Commun.
,
24
, p.
101236
.10.1016/j.mtcomm.2020.101236
12.
Arabi
,
F.
,
Youssef
,
T.
,
Coudert
,
M.
,
Coquery
,
G.
,
Alayli
,
N.
,
Martineau
,
D.
, and
Belnoue
,
O.
,
2020
, “
Thermo-Mechanical Assessment of Silver Sintering for Attaching Power Components in Embedded PCB
,”
Microelectron. Reliab.
,
114
, p.
113900
.10.1016/j.microrel.2020.113900
13.
Dai
,
J.
,
Li
,
J.
,
Agyakwa
,
P.
,
Corfield
,
M.
, and
Johnson
,
C. M.
,
2018
, “
Comparative Thermal and Structural Characterization of Sintered Nano-Silver and High-Lead Solder Die Attachments During Power Cycling
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
2
), pp.
256
265
.10.1109/TDMR.2018.2825386
14.
Chen
,
X.
,
Li
,
R.
,
Qi
,
K.
, and
Lu
,
G. Q.
,
2008
, “
Tensile Behaviors and Ratcheting Effects of Partially Sintered Chip-Attachment Films of a Nanoscale Silver Paste
,”
J. Electron. Mater.
,
37
(
10
), pp.
1574
1579
.10.1007/s11664-008-0516-2
15.
Wang
,
T.
,
Chen
,
G.
,
Wang
,
Y.
,
Chen
,
X.
, and
Lu
,
G. Q.
,
2010
, “
Uniaxial Ratcheting and Fatigue Behaviors of Low-Temperature Sintered Nano-Scale Silver Paste at Room and High Temperatures
,”
Mater. Sci. Eng.: A
,
527
(
24–25
), pp.
6714
6722
.10.1016/j.msea.2010.07.012
16.
Li
,
X.
,
Chen
,
G.
,
Wang
,
L.
,
Mei
,
Y. H.
,
Chen
,
X.
, and
Lu
,
G. Q.
,
2013
, “
Creep Properties of Low-Temperature Sintered Nano-Silver Lap Shear Joints
,”
Mater. Sci. Eng.: A
,
579
, pp.
108
113
.10.1016/j.msea.2013.05.001
17.
Yu
,
D. J.
,
Chen
,
X.
,
Chen
,
G.
,
Lu
,
G. Q.
, and
Wang
,
Z. Q.
,
2009
, “
Applying Anand Model to Low-Temperature Sintered Nanoscale Silver Paste Chip Attachment
,”
Mater. Des.
,
30
(
10
), pp.
4574
4579
.10.1016/j.matdes.2009.04.006
18.
Tan
,
Y.
,
Li
,
X.
, and
Chen
,
X.
,
2014
, “
Fatigue and Dwell-Fatigue Behavior of Nano-Silver Sintered Lap-Shear Joint at Elevated Temperature
,”
Microelectron. Reliab.
,
54
(
3
), pp.
648
653
.10.1016/j.microrel.2013.12.007
19.
Tan
,
Y.
,
Li
,
X.
,
Chen
,
G.
,
Gao
,
Q.
,
Lu
,
G. Q.
, and
Chen
,
X.
,
2020
, “
Effects of Thermal Aging on Long-Term Reliability and Failure Modes of Nano-Silver Sintered Lap-Shear Joint
,”
Int. J. Adhes. Adhes.
,
97
, p.
102488
.10.1016/j.ijadhadh.2019.102488
20.
Shioda
,
R.
,
Kariya
,
Y.
,
Mizumura
,
N.
, and
Sasaki
,
K.
,
2017
, “
Low-Cycle Fatigue Life and Fatigue Crack Propagation of Sintered Ag Nanoparticles
,”
J. Electron. Mater.
,
46
(
2
), pp.
1155
1162
.10.1007/s11664-016-5068-2
21.
Suzuki
,
T.
,
Terasaki
,
T.
,
Yasuda
,
Y.
,
Morita
,
T.
,
Kawana
,
Y.
,
Ishikawa
,
D.
,
Nishimura
,
M.
,
Nakako
,
H.
, and
Kurafuchi
,
K.
,
2018
, “
Effect of Loading Type on Fatigue Lifetime of Sintered-Silver Die Attach
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
3
), pp.
350
358
.10.1109/TDMR.2018.2847638
22.
Chen
,
C.
,
Nagao
,
S.
,
Suganuma
,
K.
,
Jiu
,
J.
,
Sugahara
,
T.
,
Zhang
,
H.
,
Iwashige
,
T.
,
Sugiura
,
K.
, and
Tsuruta
,
K.
,
2017
, “
Macroscale and Microscale Fracture Toughness of Microporous Sintered Ag for Applications in Power Electronic Devices
,”
Acta Mater.
,
129
, pp.
41
51
.10.1016/j.actamat.2017.02.065
23.
Wang
,
S.
,
Kirchlechner
,
C.
,
Keer
,
L.
,
Dehm
,
G.
, and
Yao
,
Y.
,
2020
, “
Interfacial Fracture Toughness of Sintered Hybrid Silver Interconnects
,”
J. Mater. Sci.
,
55
(
7
), pp.
2891
2904
.10.1007/s10853-019-04212-1
24.
Gadaud
,
P.
,
Caccuri
,
V.
,
Bertheau
,
D.
,
Carr
,
J.
, and
Milhet
,
X.
,
2016
, “
Ageing Sintered Silver: Relationship Between Tensile Behavior, Mechanical Properties and the Nanoporous Structure Evolution
,”
Mater. Sci. Eng.: A
,
669
, pp.
379
386
.10.1016/j.msea.2016.05.108
25.
Wakamoto
,
K.
,
Mochizuki
,
Y.
,
Otsuka
,
T.
,
Nakahara
,
K.
, and
Namazu
,
T.
,
2020
, “
Temperature Dependence on Tensile Mechanical Properties of Sintered Silver Film
,”
Materials
,
13
(
18
), p.
4061
.10.3390/ma13184061
26.
Wakamoto
,
K.
,
Mochizuki
,
Y.
,
Otsuka
,
T.
,
Nakahara
,
K.
, and
Namazu
,
T.
,
2019
, “
Tensile Mechanical Properties of Sintered Porous Silver Films and Their Dependence on Porosity
,”
Jpn. J. Appl. Phys.
,
58
(
SD
), p.
SDDL08
.10.7567/1347-4065/ab0491
27.
Jin
,
J.
,
Mei
,
Y.
,
Chen
,
G.
,
Chen
,
X.
, and
Lu
,
G.-Q.
,
2020
, “
Modeling of Intergranular Mechanical Fatigue of a Sintered Nanosilver Die Attachment for Power Electronics
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
10
(
6
), pp.
982
989
.10.1109/TCPMT.2020.2965117
28.
Su
,
Y.
,
Fu
,
G.
,
Liu
,
C.
,
Zhang
,
K.
,
Zhao
,
L.
,
Liu
,
C.
,
Liu
,
A.
, and
Song
,
J.
,
2021
, “
Thermo-Elasto-Plastic Phase-Field Modelling of Mechanical Behaviours of Sintered Nano-Silver With Randomly Distributed Micro-Pores
,”
Comput. Methods Appl. Mech. Eng.
,
378
, p.
113729
.10.1016/j.cma.2021.113729
29.
Cai
,
W.
,
Wang
,
P.
, and
Fan
,
J.
,
2020
, “
A Variable-Order Fractional Model of Tensile and Shear Behaviors for Sintered Nano-Silver Paste Used in High Power Electronics
,”
Mech. Mater.
,
145
, p.
103391
.10.1016/j.mechmat.2020.103391
30.
Qian
,
C.
,
Sun
,
Z.
,
Fan
,
J.
,
Ren
,
Y.
,
Sun
,
B.
,
Feng
,
Q.
,
Yang
,
D.
, and
Wang
,
Z.
,
2020
, “
Characterization and Reconstruction for Stochastically Distributed Void Morphology in Nano‐Silver Sintered Joints
,”
Mater. Des.
,
196
, p.
109079
.10.1016/j.matdes.2020.109079
31.
Leslie
,
D.
,
Dasgupta
,
A.
, and
Morillo
,
C.
,
2017
, “
Viscoplastic Properties of Pressure-Less Sintered Silver Materials Using Indentation
,”
Microelectron. Reliab.
,
74
, pp.
121
130
.10.1016/j.microrel.2017.04.009
32.
Zhang
,
H.
,
Liu
,
Y.
,
Wang
,
L.
,
Sun
,
F.
,
Fan
,
X.
, and
Zhang
,
G.
,
2019
, “
Indentation Hardness, Plasticity and Initial Creep Properties of Nanosilver Sintered Joint
,”
Results Phys.
,
12
, pp.
712
717
.10.1016/j.rinp.2018.12.026
33.
Kolbinger
,
E.
,
Kuttler
,
S.
,
Wagner
,
S.
, and
Schneider-Ramelow
,
M.
,
2020
, “
Investigation of the Mechanical Properties of Corroded Sintered Silver Layers by Using Nanoindentation
,”
Microelectron. Reliab.
,
114
, p.
113889
.10.1016/j.microrel.2020.113889
34.
Long
,
X.
,
Jia
,
Q. P.
,
Li
,
Z.
, and
Wen
,
S. X.
,
2020
, “
Reverse Analysis of Constitutive Properties of Sintered Silver Particles From Nanoindentations
,”
Int. J. Solids Struct.
,
191–192
, pp.
351
362
.10.1016/j.ijsolstr.2020.01.014
35.
Long
,
X.
,
Jia
,
Q.
,
Shen
,
Z.
,
Liu
,
M.
, and
Guan
,
C.
,
2021
, “
Strain Rate Shift for Constitutive Behaviour of Sintered Silver Nanoparticles Under Nanoindentation
,”
Mech. Mater.
,
158
, p.
103881
.10.1016/j.mechmat.2021.103881
36.
Jiang
,
L.
,
Lei
,
T. G.
,
Ngo
,
K. D. T.
,
Lu
,
G.-Q.
, and
Luo
,
S.
,
2014
, “
Evaluation of Thermal Cycling Reliability of Sintered Nanosilver Versus Soldered Joints by Curvature Measurement
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
4
(
5
), pp.
751
761
.10.1109/TCPMT.2013.2296315
37.
Heilmann
,
J.
,
Nikitin
,
I.
,
Zschenderlein
,
U.
,
May
,
D.
,
Pressel
,
K.
, and
Wunderle
,
B.
,
2017
, “
Reliability Experiments of Sintered Silver Based Interconnections by Accelerated Isothermal Bending Tests
,”
Microelectron. Reliab.
,
74
, pp.
136
146
.10.1016/j.microrel.2017.04.016
38.
Siow
,
K. S.
, and
Chua
,
S. T.
,
2019
, “
Thermal Cycling of Sintered Silver (Ag) Joint as Die-Attach Material
,”
JOM
,
71
(
9
), pp.
3066
3075
.10.1007/s11837-019-03461-4
39.
Williams
,
J. J.
,
Regalado
,
I. L.
,
Liu
,
L.
,
Joshi
,
S.
, and
Chawla
,
N.
,
2020
, “
Effect of Component Flexibility During Thermal Cycling of Sintered Nano-Silver Joints by X-Ray Microtomography
,”
J. Electron. Mater.
,
49
(
1
), pp.
241
244
.10.1007/s11664-019-07461-7
40.
Hong
,
W. S.
,
Kim
,
M. S.
, and
Hong
,
K. K.
,
2021
, “
Electrical and Microstructural Reliability of Pressureless Silver-Sintered Joints on Silicon Carbide Power Modules Under Thermal Cycling and High-Temperature Storage
,”
J. Electron. Mater.
,
50
(
3
), pp.
914
925
.10.1007/s11664-020-08698-3
41.
Tabor
,
D.
,
2000
,
The Hardness of Metals. Published in the Oxford Classics Series
,
Oxford University Press
,
New York
.
42.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
, Cambridge,
UK
.10.1017/CBO9781139171731
43.
Antunes
,
J. M.
,
Fernandes
,
J. V.
,
Menezes
,
L. F.
, and
Chaparro
,
B. M.
,
2007
, “
A New Approach for Reverse Analyses in Depth-Sensing Indentation Using Numerical Simulation
,”
Acta Mater.
,
55
(
1
), pp.
69
81
.10.1016/j.actamat.2006.08.019
44.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
45.
Dao
,
M.
,
Chollacoop
,
N. V.
,
Van Vliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
(
19
), pp.
3899
3918
.10.1016/S1359-6454(01)00295-6
46.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
2004
, “
Scaling, Dimensional Analysis, and Indentation Measurements
,”
Mater. Sci. Eng.: R: Rep.
,
44
(
4–5
), pp.
91
149
.10.1016/j.mser.2004.05.001
47.
Lee
,
J.
,
Lee
,
C.
, and
Kim
,
B.
,
2009
, “
Reverse Analysis of Nano-Indentation Using Different Representative Strains and Residual Indentation Profiles
,”
Mater. Des.
,
30
(
9
), pp.
3395
3404
.10.1016/j.matdes.2009.03.030
You do not currently have access to this content.