Abstract

The blocking voltage level of silicon carbide (SiC) can reach 10–25 kV, which will significantly increase the power density and capacity of power modules. However, high voltage can induce a high electric field, increase the risk of partial discharge (PD), and threaten the insulation reliability. This paper focuses on the triple points between the metal electrode, silicone gel, and ceramic in power modules. The influencing factors of the electric field at different triple points are fully analyzed. PD experiments are performed and the results show that the interface between silicone gel and ceramic is a weak area of insulation. Therefore, this paper demonstrates that area of weak insulation and high electric field meet at the triple point. To solve this problem, a new structure of the ceramic substrate is proposed, which isolates the interface area from the high electric field. At the same time, the new structure can significantly reduce the high electric field reinforcement.

References

1.
Justin Broughton
,
A.
,
Smet
,
V.
,
Tummala
,
R. R.
, and
Joshi
,
Y. K.
, “
Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
040801
.10.1115/1.4040828
2.
He
,
J.
,
Zhao
,
T.
,
Jing
,
X.
, and
Demerdash
,
N. A. O.
,
2014
, “
Application of Wide Bandgap Devices in Renewable Energy Systems - Benefits and Challenges
,” 2014 International Conference on Renewable Energy Research and Application (
ICRERA
), Milwaukee, WI, Oct. 19–22, pp.
749
754
.10.1109/ICRERA.2014.7016485
3.
Hamada
,
K.
,
2012
, “
SiC Device and Power Module Technologies for Environmentally Friendly Vehicles
,”
International Conference Integrated Power Electronic System, CIPS
, Nuremberg/Germany, Mar. 6–8, pp.
1
6
.https://ieeexplore.ieee.org/document/6170667
4.
DiMarino
,
C. M.
,
Mouawad
,
B.
,
Johnson
,
C. M.
,
Boroyevich
,
D.
, and
Burgos
,
R.
,
2020
, “
10-kV SiC MOSFET Power Module With Reduced Common-Mode Noise and Electric Field
,”
IEEE Trans. Power Electron.
,
35
(
6
), pp.
6050
6060
.10.1109/TPEL.2019.2952633
5.
Lee
,
F. C.
,
van Wyk
,
J. D.
,
Boroyevich
,
D.
,
Lu
,
G.-Q.
,
Liang
,
Z.
, and
Barbosa
,
P.
,
2002
, “
Technology Trends Toward a System-in-a-Module in Power Electronics
,”
IEEE Circuits Syst. Mag.
,
2
(
4
), pp.
4
22
.10.1109/MCAS.2002.1173132
6.
Chowdhury
,
S.
, and
Chow
,
T. P.
,
2016
, “
Performance Tradeoffs for Ultra-High Voltage (15 kV to 25 kV) 4H-SiC N-Channel and P-Channel IGBTs
,”
Proceedings of International Symposium Power Semiconductor Devices ICs, Prague
, June 12–16, Czech Republic, pp.
75
78
.10.1109/ISPSD.2016.7520781
7.
Cavallini
,
A.
,
Fabiani
,
D.
, and
Montanari
,
G. C.
,
2010
, “
Power Electronics and Electrical Insulation Systems – Part 1: Phenomenology Overview
,”
IEEE Electr. Insul. Mag.
,
26
(
3
), pp.
7
15
.10.1109/MEI.2010.5482783
8.
Zhang
,
B.
,
Ghassemi
,
M.
, and
Zhang
,
Y.
,
2021
, “
Insulation Materials and Systems for Power Electronics Modules: A Review Identifying Challenges and Future Research Needs
,”
IEEE Trans. Dielectr. Electr. Insul
,
28
(
1
), pp.
290
302
.10.1109/TDEI.2020.009041
9.
Auge
,
J. L.
,
Lesaint
,
O.
, and
Thi
,
A. T. V.
,
2013
, “
Partial Discharges in Ceramic Substrates Embedded in Liquids and Gels
,”
IEEE Trans. Dielectr. Electr. Insul.
,
20
(
1
), pp.
262
274
.10.1109/TDEI.2013.6451366
10.
Donzel
,
L.
, and
Schuderer
,
J.
,
2012
, “
Nonlinear Resistive Electric Field Control for Power Electronic Modules
,”
IEEE Trans. Dielectr. Electr. Insul.
,
19
(
3
), pp.
955
959
.10.1109/TDEI.2012.6215099
11.
Wang
,
N.
,
Cotton
,
I.
,
Robertson
,
J.
,
Follmann
,
S.
,
Evans
,
K.
, and
Newcombe
,
D.
,
2010
, “
Partial Discharge Control in a Power Electronic Module Using High Permittivity Non-Linear Dielectrics
,”
IEEE Trans. Dielectr. Electr. Insul
,
17
(
4
), pp.
1319
1326
.10.1109/TDEI.2010.5539704
12.
Robertson
,
J.
, and
Varlow
,
B. R.
,
2005
, “
Non-Linear Ferroelectric Composite Dielectric Materials
,”
IEEE Trans. Dielectr. Electr. Insul.
,
12
(
4
), pp.
779
790
.10.1109/TDEI.2005.1511103
13.
Tousi
,
M. M.
, and
Ghassemi
,
M.
,
2020
, “
Characterization of Nonlinear Field-Dependent Conductivity Layer Coupled With Protruding Substrate to Address High Electric Field Issue Within High-Voltage High-Density Wide Bandgap Power Modules
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
8
(
1
), pp.
343
350
.10.1109/JESTPE.2019.2953145
14.
Tousi
,
M. M.
, and
Ghassemi
,
M.
,
2020
, “
Combined Geometrical Techniques and Applying Nonlinear Field Dependent Conductivity Layers to Address the High Electric Field Stress Issue in High Voltage High-Density Wide Bandgap Power Modules
,”
IEEE Trans. Dielectr. Electr. Insul.
,
27
(
1
), pp.
305
313
.10.1109/TDEI.2019.008493
15.
Li
,
K.
,
Zhang
,
B.
,
Li
,
X.
,
Yan
,
F.
, and
Wang
,
L.
,
2021
, “
Electric Field Mitigation in High-Voltage High-Power IGBT Modules Using Nonlinear Conductivity Composites
,”
IEEE Trans. Compon. Packaging Manuf. Technol.
,
11
(
11
), pp.
1844
1855
.10.1109/TCPMT.2021.3106962
16.
Naeini
,
A.
,
Cherney
,
E. A.
, and
Jayaram
,
S. H.
,
2019
, “
Effect of Conductivity on the Thermal and Electrical Properties of the Stress Grading System of an Inverter-Fed Rotating Machine
,”
IEEE Trans. Dielectr. Electr. Insul.
,
26
(
1
), pp.
179
186
.10.1109/TDEI.2018.007618
17.
Letvenuk
,
M.
,
Beninca
,
M.
,
Noglik
,
H.
, and
Sheridan
,
P.
,
2017
, “
The Use of Shear Responsive Stress Control Mastics as Void Fillers in Medium Voltage Cable Accessories
,”
IEEE Electr. Insul. Mag.
,
33
(
2
), pp.
16
23
.10.1109/MEI.2017.7866675
18.
Bayer
,
C. F.
,
Waltrich
,
U.
,
Soueidan
,
A.
,
Baer
,
E.
, and
Schletz
,
A.
,
2016
, “
Stacking of Insulating Substrates and a Field Plate to Increase the PDIV for High Voltage Power Modules
,”
Proceedings of Electronic Components and Technology Conference
, Las Vegas, NV, May 31–June 3, pp.
1172
1178
.10.1109/ECTC.2016.40
19.
Hohlfeld
,
O.
,
Bayerer
,
R.
,
Hunger
,
T.
, and
Hartung
,
H.
,
2012
, “
Stacked Substrates for High Voltage Applications
,”
International Conference on Integrated Power Electronics Systems, CIPS, Nuremberg
, Germany, Mar. 6–8, pp.
1
4
.https://ieeexplore.ieee.org/document/6170653
20.
Hourdequin
,
H.
,
Laudebat
,
L.
,
Locatelli
,
M.
, and
Bidan
,
P.
,
2016
, “
Design of Packaging Structures for High Voltage Power Electronics Devices: Electric Field Stress on Insulation
,”
Proceedings of IEEE International Conferences Dielectrics, ICD, Montpellier
, France, July 3–7, pp.
999
1002
.10.1109/ICD.2016.7547786
21.
Reynes
,
H.
,
Buttay
,
C.
, and
Morel
,
H.
,
2017
, “
Protruding Ceramic Substrates for High Voltage Packaging of Wide Bandgap Semiconductors
,”
IEEE Workshop Wide Bandgap Power Devices Applications, WiPDA
, Albuquerque, NM, Oct. 30–Nov. 1, pp.
404
410
.10.1109/WiPDA.2017.8170581
22.
Wang
,
Y.
,
Ding
,
Y.
,
Yuan
,
Z.
,
Peng
,
H.
,
Wu
,
J.
,
Yin
,
Y.
,
Han
,
T.
, and
Luo
,
F.
,
2021
, “
Space Charge Accumulation and Its Impact on High-Voltage Power Module Partial Discharge Under DC and PWM Waves: Testing and Modeling
,”
IEEE Trans. Power Electron
,
36
(
10
), pp.
11097
11108
.10.1109/TPEL.2021.3072655
23.
Liang
,
D.
,
Wu
,
Q.
,
Ghaderi
,
D.
, and
Guerrero
,
J. M.
,
2020
, “
Analysis of Multilayered Power Module Packaging Behavior Under Random Vibrations
,”
IEEE Trans. Compon. Pack. Manuf. Technol.
,
10
(
10
), pp.
1700
1707
.10.1109/TCPMT.2020.2995735
24.
Bayer
,
C. F.
,
Baer
,
E.
,
Waltrich
,
U.
,
Malipaard
,
D.
, and
Schletz
,
A.
,
2015
, “
Simulation of the Electric Field Strength in the Vicinity of Metallization Edges on Dielectric Substrates
,”
IEEE Trans. Dielectr. Electr. Insul.
,
22
(
1
), pp.
257
265
.10.1109/TDEI.2014.004285
25.
Khazaka
,
R.
,
Mendizabal
,
L.
,
Henry
,
D.
, and
Hanna
,
R.
,
2015
, “
Survey of High-Temperature Reliability of Power Electronics Packaging Components
,”
IEEE Trans. Power Electron.
,
30
(
5
), pp.
2456
2464
.10.1109/TPEL.2014.2357836
26.
Finis
,
G.
, and
Claudi
,
A.
,
2007
, “
On the Dielectric Breakdown Behavior of Silicone Gel Under Various Stress Conditions
,”
IEEE Trans. Dielectr. Electr. Insul.
,
14
(
2
), pp.
487
494
.10.1109/TDEI.2007.344630
27.
Sato
,
M.
,
Kumada
,
A.
,
Hidaka
,
K.
,
Yamashiro
,
K.
,
Hayase
,
Y.
, and
Takano
,
T.
,
2015
, “
Dynamic Potential Distributions of Surface Discharge in Silicone Gel
,”
IEEE Trans. Dielectr. Electr. Insul.
,
22
(
3
), pp.
1733
1738
.10.1109/TDEI.2015.7116371
28.
Nakamura
,
S.
,
Kumada
,
A.
,
Hidaka
,
K.
,
Sato
,
M.
,
Hayase
,
Y.
,
Takano
,
S.
,
Yamashiro
,
K.
, and
Takano
,
T.
,
2019
, “
Electrical Treeing in Silicone Gel Under Repetitive Voltage Impulses
,”
IEEE Trans. Dielectr. Electr. Insul.
,
26
(
6
), pp.
1919
1925
.10.1109/TDEI.2019.008227
29.
You
,
H.
,
Wei
,
Z.
,
Hu
,
B.
,
Zhao
,
Z.
,
Na
,
R.
, and
Wang
,
J.
,
2021
, “
Partial Discharge Behaviors in Power Modules Under Square Pulses With Ultrafast dv/dt
,”
IEEE Trans. Power Electron.
,
36
(
3
), pp.
2611
2620
.10.1109/TPEL.2020.3014043
30.
Yan
,
F.
,
Wang
,
L.
,
Yang
,
T.
,
Wang
,
B.
,
Yang
,
F.
, and
Yu
,
L.
,
2020
, “
Design of Packaging Structure in High Voltage Power Modules to Avoid Surface Breakdown
,” IEEE Workshop Wide Bandgap Power Devices Applications Asia,
WiPDA Asia
, Sept. 23–25, pp.
1
5
.10.1109/WiPDAAsia49671.2020.9360276
You do not currently have access to this content.