Abstract

Power densification and rising module heat losses cannot be managed by traditional “external-to-case” cooling solutions. This is especially pronounced in high voltage systems, where intervening layers of insulating material between the power devices and cooling solution need to be sufficiently thick to provide adequate voltage isolation. As operating voltages increase, the required thicknesses for these insulating layers become so large that they limit the ability to extract the heat. A direct cooling approach that addresses voltage separation issues represents a unique opportunity to deliver coolant to the hottest regions, while opening up the opportunity for increased scaling of power electronics modules. However technical concerns about long-term performance of coolants and their voltage isolation characteristics coupled with integration challenges impede adoption. Here, the reliability and performance of a dielectric fluid of the hydrofluoroether type, HFE7500, are examined to advance the feasibility of a direct cooling approach for improved thermal management of high-voltage, high-power module. The breakdown voltage of the dielectric fluid is characterized through relevant temperatures, flow rates, and electric fields with the ultimate goal of developing design rules for direct integrated cooling schemes.

References

1.
Gersh
,
J.
,
DiMarino
,
C.
,
DeVoto
,
D.
,
Paret
,
P.
,
Major
,
J.
, and
Gage
,
S.
,
2021
, “
Evaluation of Low-Pressure-Sintered Multi-Layer Substrates for Medium-Voltage SiC Power Modules
,” 2021 IEEE Applied Power Electronics Conference and Exposition (
APEC
), Phoenix, AZ, June 14–17, pp.
20
26
.10.1109/APEC42165.2021.9487244
2.
Boteler
,
L. M.
,
Niemann
,
V. A.
,
Urciuoli
,
D. P.
, and
Miner
,
S. M.
,
2017
, “
Stacked Power Module With Integrated Thermal Management
,” 2017 IEEE International Workshop on Integrated Power Packaging (
IWIPP
), Delft, The Netherlands, Apr. 5–7, pp.
1
5
.10.1109/IWIPP.2017.7936764
3.
Zhu
,
N.
,
Mantooth
,
H. A.
,
Xu
,
D.
,
Chen
,
M.
, and
Glover
,
M. D.
,
2017
, “
A Solution to Press-Pack Packaging of SiC MOSFETS
,”
IEEE Trans. Ind. Electron.
,
64
(
10
), pp.
8224
8234
.10.1109/TIE.2017.2686365
4.
Shinde
,
P. A.
,
Bansode
,
P. V.
,
Saini
,
S.
,
Kasukurthy
,
R.
,
Chauhan
,
T.
,
Shah
,
J. M.
, and
Agonafer
,
D.
,
2019
, “
Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
,”
ASME
Paper No. IPACK2019-6590. 10.1115/IPACK2019-6590
5.
Bansode
,
P. V.
,
Shah
,
J. M.
,
Gupta
,
G.
,
Agonafer
,
D.
,
Patel
,
H.
,
Roe
,
D.
, and
Tufty
,
R.
,
2019
, “
Measurement of the Thermal Performance of a Custom-Build Single-Phase Immersion Cooled Server at Various High and Low Temperatures for Prolonged Time
,”
ASME J. Electron. Packag.
,
142
(
1
), p.
011010
.10.1115/1.4045156
6.
Bostanci
,
H.
,
Van Ee
,
D.
,
Saarloos
,
B. A.
,
Rini
,
D. P.
, and
Chow
,
L. C.
,
2009
, “
Spray Cooling of Power Electronics Using High Temperature Coolant and Enhanced Surface
,”
2009 IEEE Vehicle Power and Propulsion Conference
, Dearborn, MI, Sept. 7–10, pp.
609
613
.10.1109/VPPC.2009.5289793
7.
Wei
,
T.-W.
,
Oprins
,
H.
,
Cherman
,
V.
,
De Wolf
,
I.
,
Beyne
,
E.
,
Yang
,
S.
, and
Baelmans
,
M.
, May
2018
, “
3D Printed Liquid Jet Impingement Cooler: Demonstration, Opportunities and Challenges
,” 2018 IEEE 68th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29–June 1, pp.
2389
2396
.10.1109/ECTC.2018.00360
8.
Whitt
,
R.
,
Huitink
,
D.
,
Emon
,
A.
,
Deshpande
,
A.
, and
Luo
,
F.
,
2021
, “
Thermal and Electrical Performance in High-Voltage Power Modules With Nonmetallic Additively Manufactured Impingement Coolers
,”
IEEE Trans. Power Electron.
,
36
(
3
), pp.
3192
3199
.10.1109/TPEL.2020.3015226
9.
Fu
,
B.-R.
,
Lee
,
C.-Y.
, and
Pan
,
C.
,
2013
, “
The Effect of Aspect Ratio on Flow Boiling Heat Transfer of HFE-7100 in a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
53
61
.10.1016/j.ijheatmasstransfer.2012.11.050
10.
Schulz-Harder
,
J.
,
Dezord
,
J. B.
,
Schaeffer
,
C.
,
Avenas
,
Y.
,
Puig
,
O.
,
Rogg
,
A.
,
Exel
,
K.
, and
Utz-Kistner
,
A.
,
2006
, “
DBC (Direct Bond Copper) Substrate With Integrated Flat Heat Pipe
,”
Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Dallas, TX, Mar. 14–16, pp.
152
156
.10.1109/STHERM.2006.1625221
11.
Kwon
,
B.
,
Foulkes
,
T.
,
Yang
,
T.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2020
, “
Air Jet Impingement Cooling of Electronic Devices Using Additively Manufactured Nozzles
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
10
(
2
), pp.
220
229
.10.1109/TCPMT.2019.2936852
12.
Birbarah
,
P.
,
Gebrael
,
T.
,
Foulkes
,
T.
,
Stillwell
,
A.
,
Moore
,
A.
,
Pilawa-Podgurski
,
R.
, and
Miljkovic
,
N.
,
2020
, “
Water Immersion Cooling of High Power Density Electronics
,”
Int. J. Heat Mass Transfer
,
147
, p.
118918
.10.1016/j.ijheatmasstransfer.2019.118918
13.
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
H.
,
Palko
,
J.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
, May
2017
, “
Microchannel Cooling Strategies for High Heat Flux (1 kW/cm2) Power Electronic Applications
,” 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
98
104
.10.1109/ITHERM.2017.7992457
14.
DiMarino
,
C. M.
,
Mouawad
,
B.
,
Johnson
,
C. M.
,
Boroyevich
,
D.
, and
Burgos
,
R.
,
2020
, “
10-kV SiC MOSFET Power Module With Reduced Common-Mode Noise and Electric Field
,”
IEEE Trans. Power Electron.
,
35
(
6
), pp.
6050
6060
.10.1109/TPEL.2019.2952633
15.
Deshpande
,
A.
,
Luo
,
F.
,
Iradukunda
,
A.
,
Huitink
,
D.
, and
Boteler
,
L.
,
2019
, “
Stacked DBC Cavitied Substrate for a 15-kV Half-Bridge Power Module
,” 2019 IEEE International Workshop on Integrated Power Packaging (
IWIPP
), Toulouse, France, Apr. 24–26, pp.
12
17
.10.1109/IWIPP.2019.8799077
16.
Boteler
,
L. M.
,
Hinojosa
,
M.
,
Niemann
,
V. A.
,
Miner
,
S. M.
, and
Gonzalez-Nino
,
D.
, May
2017
, “
High Voltage Stacked Diode Package With Integrated Thermal Management
,” 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm)
, Orlando, FL, May 30–June 2, pp.
913
920
.10.1109/ITHERM.2017.7992583
17.
Ikeda
,
M.
,
Teranishi
,
T.
,
Honda
,
M.
, and
Yanari
,
T.
,
1981
, “
Breakdown Characteristics of Moving Transformer Oil
,”
IEEE Trans. Power Appar. Syst
,
PAS-100
(
2
), pp.
921
928
.10.1109/TPAS.1981.316952
18.
Schmidt
,
W. F.
,
1989
, “
Electrical Breakdown of Liquid Hydrocarbons in a Test Cell With One Rotating Electrode
,”
IEEE Trans. Electr. Insul.
,
24
(
2
), pp.
179
183
.10.1109/14.90268
19.
Zaky
,
A. A.
,
Megahed
,
I. Y.
, and
Abdallah
,
M. A.
,
1996
, “
Effect of Cross-Field Flow on Conduction Current and Breakdown in Transformer Oil Using Point-to-Plane Electrodes and Direct Voltage
,”
ICDL'96. 12th International Conference on Conduction and Breakdown in Dielectric Liquids
, Roma, Italy, July 15–19, pp.
283
286
.10.1109/ICDL.1996.565473
20.
Theodossiou
,
G. G.
,
Lee
,
M. J.
, and
Nelson
,
J. K.
,
1984
, “
Influence of Enforced Liquid Motion on Breakdown Properties
,”
Conference on Electrical Insulation Dielectric Phenomena - Annual Report 1984
, Claymont, DE, Oct. 21–25, pp.
279
284
.10.1109/EIDP.1984.7684000
21.
Tuma
,
P. E.
,
2001
, “
Using Segregated HFEs as Heat Transfer Fluids as Heat Transfer Fluids Avoiding Problems in System Design
,”
Chem. Process.
, 64(2), pp.
47
50
.https://www.semanticscholar.org/paper/Using-Segregated-HFEs-as-Heat-Transfer-Fluids-in-Tuma/3ca3e62184b0aa7319ccf680c4eff16325e849f7
22.
3M Electronics Markets Materials Division,
2022
, “
3M-Novec-7500-Engineered Fluid
,” 3M Company, St. Paul, MN, accessed Mar. 20, 2022, https://multimedia.3m.com/mws/media/65496O/3m-novec-7500-engineered-fluid.pdf
23.
Frey
,
D.
,
Schanen
,
J. L.
,
Auge
,
J. L.
, and
Lesaint
,
O.
,
2003
, “
Electric Field Investigation in High Voltage Power Modules Using Finite Element Simulations and Partial Discharge Measurements
,”
38th IAS Annual Meeting on Conference Record of the Industry Applications Conference
, Salt Lake City, UT, Oct. 12–16, pp.
1000
1005
.10.1109/IAS.2003.1257662
24.
Lienhard
,
J. H.
,
1966
, “
Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders
,” Technical Extension Service,
300
,
Washington State University, Pullman, WA
.https://www.uh.edu/engines/vortexcylinders.pdf
25.
Kuffel
,
E.
,
Zaengl
,
W. S.
, and
Kuffel
,
J.
,
2000
, “
Chapter 6—Breakdown in Solid and Liquid Dielectrics
,”
High Voltage Engineering Fundamentals
, 2nd ed.,
E.
Kuffel
,
W. S.
Zaengl
, and
J.
Kuffel
, eds.,
Newnes
,
Oxford, UK
, pp.
367
394
.
26.
André
,
D.
,
2011
, “
Conduction and Breakdown Initiation in Dielectric Liquids
,”
2011 IEEE International Conference on Dielectric Liquids
, Trondheim, Norway, June 26–30, pp.
1
11
.
27.
Forster
,
E. O.
, and
FitzPatrick
,
G. J.
,
1985
, “
Electric Breakdown in Dielectric Liquids
,”
Phys. Technol.
,
16
(
6
), pp.
282
287
.10.1088/0305-4624/16/6/I02
28.
Aljure
,
M.
,
Becerra
,
M.
, and
Karlsson
,
M. E.
,
2019
, “
On the Injection and Generation of Charge Carriers in Mineral Oil Under High Electric Fields
,”
J. Phys. Commun.
,
3
(
3
), p.
035019
.10.1088/2399-6528/ab0d59
29.
Sharbaugh
,
A. H.
,
Devins
,
J. C.
, and
Rzad
,
S. J.
,
1978
, “
Progress in the Field of Electric Breakdown in Dielectric Liquids
,”
IEEE Trans. Electr. Insul
,
EI-13
(
4
), pp.
249
276
.10.1109/TEI.1978.298076
30.
Forster
,
E. O.
,
1985
, “
A Critical Assessment of Electrical Breakdown in Liquid Dielectrics
,”
Conference on Electrical Insulation Dielectric Phenomena-Annual Report 1985
, Amherst, NY, Oct. 20–24, pp.
15
26
.10.1109/CEIDP.1985.7728126
31.
Watson
,
P. K.
,
1985
, “
Electrostatic and Hydrodynamic Effects in the Electrical Breakdown of Liquid Dielectrics
,”
IEEE Trans. Electr. Insul.
,
EI-20
(
2
), pp.
395
399
.10.1109/TEI.1985.348860
32.
Qian
,
J.
,
Joshi
,
R. P.
,
Schamiloglu
,
E.
,
Gaudet
,
J.
,
Woodworth
,
J. R.
, and
Lehr
,
J.
,
2006
, “
Analysis of Polarity Effects in the Electrical Breakdown of Liquids
,”
J. Phys. D: Appl. Phys
,
39
(
2
), pp.
359
369
.10.1088/0022-3727/39/2/018
33.
Bhatt
,
M.
, and
Bhatt
,
P.
,
2022
, “
Effect of Voltage Type and Polarity on Streamer Dynamics in Transformer Oil
,”
Mater. Today: Proc.
, 62(13), pp.
7131
7136
.10.1016/j.matpr.2022.02.184
34.
Ingebrigtsen
,
S.
,
Lundgaard
,
L. E.
, and
Åstrand
,
P.-O.
,
2007
, “
Effects of Additives on Prebreakdown Phenomena in Liquid Cyclohexane: I. Streamer Initiation
,”
J. Phys. D: Appl. Phys.
,
40
(
17
), pp.
5161
5169
.10.1088/0022-3727/40/17/022
35.
Lesaint
,
O.
,
2016
, “
Prebreakdown Phenomena in Liquids: Propagation ‘Modes’ and Basic Physical Properties
,”
J. Phys. D: Appl. Phys.
,
49
(
14
), p.
144001
.10.1088/0022-3727/49/14/144001
36.
Lesaint
,
O.
, and
Costeanu
,
L.
,
2017
, “
Positive Streamer Inception in Cyclohexane: Evidence of Formative Time and Cavitation Process
,” 2017 IEEE 19th International Conference on Dielectric Liquids (
ICDL
), Manchester, UK, June 25–29, pp.
1
4
.10.1109/ICDL.2017.8124600
37.
McCluskey
,
F. M. J.
, and
Denat
,
A.
,
1996
, “
The Behavior of Small Bubbles Generated by Electrical Current Impulses Over a Wide Range of Applied Pressures
,”
J. Appl. Phys.
,
80
(
4
), pp.
2049
2059
.10.1063/1.363098
38.
Grassi
,
W.
,
Testi
,
D.
, and
Vista
,
D. D.
,
2007
, “
Optimal Working Fluid and Electrode Configuration for EHD-Enhanced Single-Phase Heat Transfer
,”
J. Enhanced Heat Transfer
,
14
(
2
), pp.
161
173
.10.1615/JEnhHeatTransf.v14.i2.60
39.
Darabi
,
J.
, and
Wang
,
H.
,
2005
, “
Development of an Electrohydrodynamic Injection Micropump and Its Potential Application in Pumping Fluids in Cryogenic Cooling Systems
,”
J. Microelectromech. Syst.
,
14
(
4
), pp.
747
755
.10.1109/JMEMS.2005.845413
40.
Butcher
,
M.
,
Neuber
,
A. A.
,
Cevallos
,
M. D.
,
Dickens
,
J. C.
, and
Krompholz
,
H.
,
2006
, “
Conduction and Breakdown Mechanismsin Transformer Oil
,”
IEEE Trans. Plasma Sci.
,
34
(
2
), pp.
467
475
.10.1109/TPS.2006.872487
41.
Lucas
,
J. R.
,
2001
,
High Voltage Engineering
,
University of Moratuwa
,
Moratuwa, Sri Lanka
.
42.
Garton
,
C. G.
,
Krasucki
,
Z.
, and
Bowden
,
F. P.
,
1964
, “
Bubbles in Insulating Liquids: Stability in an Electric Field
,”
Proc. R. Soc. London, Ser. A
,
280
(
1381
), pp.
211
226
.10.1098/rspa.1964.0141
43.
Schmidt
,
W. F.
,
1999
, “
Electrons, Holes, and Ions in Non-Polar Dielectric Liquids
,” Proceedings of 1999 IEEE 13th International Conference on Dielectric Liquids (
ICDL'99
) (Catalogue No. 99CH36213), Nara, Japan, July 25, pp.
1
8
.10.1109/ICDL.1999.798854
You do not currently have access to this content.