The methods of plastic limit analysis are used to determine the indentation pressures of a flat rectangular punch on an ice sheet. The ice sheet is idealized as a semi-infinite layer of elastic-perfectly plastic material. Lower bounds are computed by application of the lower bound limit theorem. The suitability of basic yield functions are assessed based on their ability to predict failure at demonstrated ice failure stress ratios. The particular yield functions that are employed include the generalized Mohr-Coulomb (or Drucker-Prager) criterion, a modified Drucker-Prager criterion, as well as a parabolic yield criterion used previously in literature on this topic. A study of the effects on indentation pressure of varying ice strength parameters is presented. Limit analysis solutions are obtained for plane stress conditions, and thus the applicability of a particular yield function can be evaluated for a range of ice strengths for indentation problems involving high aspect ratios.

This content is only available via PDF.
You do not currently have access to this content.