Dual fuel engine combustion utilizes a high-cetane fuel to initiate combustion of a low-cetane fuel. The performance and emissions benefits (low NOx and soot emissions) of dual fuel combustion are well-known. Ignition delay (ID) of the injected high-cetane fuel plays a critical role in quality of the dual fuel combustion process. This paper presents experimental analyses of the ID behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant engine speed (1800 rev/min) using a four-cylinder direct injection diesel engine with the stock electronic conversion unit (ECU) and a wastegated turbocharger. First, the effects of fuel–air equivalence ratios (Фpilot ∼ 0.2–0.6 and Фoverall ∼ 0.2–0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bars) on IDs were investigated. With constant Фpilot (>0.5), increasing Фoverall with propane initially decreased ID but eventually led to premature propane auto-ignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Фoverall (at constant Фpilot) more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear trend (initially increasing and later decreasing) at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID), defined as the separation between the start of injection (SOI) and the location of 50% of the cumulative heat release, was also shown to be a useful metric to understand the influence of ID on dual fuel combustion. Dual fuel ID is profoundly affected by the overall equivalence ratio, pilot fuel quantity, BMEP, and PES. At high equivalence ratios, IDs can be quite short, and beyond a certain limit, can lead to premature auto-igniton of the low-cetane fuel (especially for a reactive fuel like propane). Therefore, it is important to quantify dual fuel ID behavior over a range of engine operating conditions.
Skip Nav Destination
Article navigation
September 2013
Research-Article
Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels
S. R. Krishnan
S. R. Krishnan
1
1Corresponding author.
Search for other works by this author on:
1Corresponding author.
Contributed by the Internal Combustion Engine Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received March 9, 2012; final manuscript received January 3, 2013; published online May 24, 2013. Assoc. Editor: Gregory Jackson.
J. Energy Resour. Technol. Sep 2013, 135(3): 032202 (10 pages)
Published Online: May 24, 2013
Article history
Received:
March 9, 2012
Revision Received:
January 3, 2013
Citation
Polk, A. C., Gibson, C. M., Shoemaker, N. T., Srinivasan, K. K., and Krishnan, S. R. (May 24, 2013). "Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels." ASME. J. Energy Resour. Technol. September 2013; 135(3): 032202. https://doi.org/10.1115/1.4023482
Download citation file:
Get Email Alerts
Related Articles
Ignition Delay and Combustion Characteristics of Gaseous Fuel Jets
J. Eng. Gas Turbines Power (April,2010)
Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging
J. Energy Resour. Technol (January,2016)
Experimental Validation of a Three-Component Surrogate for Sasol-Isoparaffinic Kerosene in Single Cylinder Diesel Engine and Ignition Quality Tester
J. Eng. Gas Turbines Power (August,2018)
An Investigation on Sensitivity of Ignition Delay and Activation Energy in Diesel Combustion
J. Eng. Gas Turbines Power (September,2015)
Related Proceedings Papers
Related Chapters
Reciprocating Engine Performance Characteristics
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables