Given that sulfur contents of coals vary widely, this work investigated whether cofiring of high-sulfur coals with low-sulfur coals of different ranks has any distinct advantages on lowering the sulfur dioxide emissions of the former coals, beyond those predicted based on their blending proportions. Such cofiring intends to take advantage of documented evidence in previous investigations at the author's laboratory, which demonstrated that lignite coals of low-sulfur, high-calcium, and high-sodium content undergo massive bulk fragmentation during their devolatilization. This particular behavior generates a large number of small-sized char particles which, upon effective dispersion in the gas, can heterogeneously absorb the emitted sulfur dioxide gases, i.e., act as defacto sorbents, and then retain them in the ash. This study included two high- and medium-sulfur bituminous coals, two low-sulfur lignite coals, and a sub-bituminous coal. Results showed that bituminous coals burning under substoichiometric (fuel-lean) conditions release most of their sulfur content in the form of SO2 gases, whereas low-ranked coals only partly release their sulfur as SO2. Furthermore, the SO2 emission from coal blends is nonlinear with blend proportions, hence, beneficial synergisms that result in substantial overall reductions of SO2 can be attained. Finally, NOx emissions from coal blends did not show consistent beneficial synergisms under the implemented fuel-lean combustion conditions.

References

1.
WCA, 2015, “
Coal and Electricity
,”
World Coal Association
,
London
, http://www.worldcoal.org/coal/uses-of-coal/coal-electricity/
2.
M. J.
Bradley Assoc
.,
2014
, “
Benchmarking Air Emissions of the 100 Largest Electric Power Producers in the United States
,”
M.J. Bradley and Associates, LLC
,
Concord, MA
, http://www.nrdc.org/air/pollution/benchmarking/files/benchmarking-2014.pdf
3.
Calkins
,
W. H.
,
1994
, “
The Chemical Forms of Sulfur in Coal: A Review
,”
Fuel
,
73
(
4
), pp.
475
484
.
4.
Flagan
,
R. C.
, and
Seinfeld
,
J. H.
,
2013
,
Fundamentals of Air Pollution Engineering
,
Prentice Hall
,
Englewood Cliffs, NJ
.
5.
Zygarlicke
,
C. J.
,
Stomberg
,
A. L.
,
Folkedahl
,
B. C.
, and
Strege
,
J. R.
,
2006
, “
Alkali Influences on Sulfur Capture for North Dakota Lignite Combustion
,”
Fuel Process. Technol.
,
87
(
10
), pp.
855
861
.
6.
Miller
,
J. A.
, and
Fisk
,
G. A.
,
1987
, “
Combustion Chemistry
,”
Chem. Eng. News
,
65
(
35
), pp.
22
46
.
7.
Nelson
,
P. F.
,
Buckley
,
A. N.
, and
Kelly
,
M. D.
,
1992
, “
Functional Forms of Nitrogen in Coals and the Release of Coal Nitrogen as NOx Precursors (HCN and NH3)
,”
Symp. (Int.) Combust.
,
24
(
1
).
8.
Sarofim
,
A. F.
, and
Flagan
,
R. C.
,
1976
, “
NOx Control for Stationary Combustion Sources
,”
Prog. Energy Combust. Sci.
,
2
(
1
), pp.
1
25
.
9.
Wendt
,
J.
,
Pershing
,
D.
,
Lee
,
J.
, and
Glass
,
J.
,
1979
, “
Pulverized Coal Combustion: NOx Formation Mechanisms Under Fuel Rich and Staged Combustion Conditions
,”
Symp. (Int.) Combust.
,
17
(
1
).
10.
Courtemanche
,
B.
, and
Levendis
,
Y. A.
,
1998
, “
A Laboratory Study on the NO, NO2, SO2, CO and CO2 Emissions From the Combustion of Pulverized Coal, Municipal Waste Plastics and Tires
,”
Fuel
,
77
(
3
), pp.
183
196
.
11.
Kazanc
,
F.
,
Khatami
,
R.
,
Crnkovic
,
P. M.
, and
Levendis
,
Y. A.
,
2011
, “
Emissions of NOx and SO2 From Coals of Various Ranks, Bagasse, and Coal-Bagasse Blends Burning in O2/N2 and O2/CO2 Environments
,”
Energy Fuels
,
25
(
7
), pp.
2850
2861
.
12.
Collins
,
P.
,
Schroeder
,
A.
,
Buckius
,
R.
,
Krier
,
H.
, and
Peters
,
J.
,
1992
, “
Flammability Characteristics of Treated Coals
,”
ASME J. Energy Resour. Technol.
,
114
(
1
), pp.
65
69
.
13.
Atal
,
A.
, and
Levendis
,
Y. A.
,
1995
, “
Comparison of the Combustion Behaviour of Pulverized Waste Tyres and Coal
,”
Fuel
,
74
(
11
), pp.
1570
1581
.
14.
Bejarano
,
P. A.
, and
Levendis
,
Y. A.
,
2008
, “
Single-Coal-Particle Combustion in O2/N2 and O2/CO2 Environments
,”
Combust. Flame
,
153
(
1
), pp.
270
287
.
15.
Levendis
,
Y. A.
,
Joshi
,
K.
,
Khatami
,
R.
, and
Sarofim
,
A. F.
,
2011
, “
Combustion Behavior in Air of Single Particles From Three Different Coal Ranks and From Sugarcane Bagasse
,”
Combust. Flame
,
158
(
3
), pp.
452
465
.
16.
Khatami
,
R.
,
Stivers
,
C.
,
Joshi
,
K.
,
Levendis
,
Y. A.
, and
Sarofim
,
A. F.
,
2012
, “
Combustion Behavior of Single Particles From Three Different Coal Ranks and From Sugar Cane Bagasse in O2/N2 and O2/CO2 Atmospheres
,”
Combust. Flame
,
159
(
3
), pp.
1253
1271
.
17.
Khatami
,
R.
,
Stivers
,
C.
, and
Levendis
,
Y. A.
,
2012
, “
Ignition Characteristics of Single Coal Particles From Three Different Ranks in O2/N2 and O2/CO2 Atmospheres
,”
Combust. Flame
,
159
(
12
), pp.
3554
3568
.
18.
Riaza
,
J.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Álvarez
,
L.
,
Gil
,
M. V.
,
Pevida
,
C.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2014
, “
Single Particle Ignition and Combustion of Anthracite, Semi-Anthracite and Bituminous Coals in Air and Simulated Oxy-Fuel Conditions
,”
Combust. Flame
,
161
(
4
), pp.
1096
1108
.
19.
Helble
,
J.
, and
Sarofim
,
A.
,
1989
, “
Influence of Char Fragmentation on Ash Particle Size Distributions
,”
Combust. Flame
,
76
(
2
), pp.
183
196
.
20.
Gronhovd
,
G.
,
Tufte
,
P.
, and
Selle
,
S.
,
1973
,
Some Studies on Stack Emissions From Lignite-Fired Powerplants
,
Grand Forks Energy Research Laboratory
,
Bureau of Mines, Grand Forks, ND
.
21.
Tillman
,
D.
,
Duong
,
D.
, and
Harding
,
N. S.
,
2012
,
Solid Fuel Blending: Principles, Practices, and Problems
,
Elsevier
,
Butterworth-Heinemann, Waltham, MA
.
22.
Su
,
S.
,
Pohl
,
J. H.
,
Holcombe
,
D.
, and
Hart
,
J.
,
2001
, “
Techniques to Determine Ignition, Flame Stability and Burnout of Blended Coals in p.f. Power Station Boilers
,”
Prog. Energy Combust. Sci.
,
27
(
1
), pp.
75
98
.
23.
Sathyaraj
,
S.
, and
Gollahalli
,
S.
,
1991
, “
A Laboratory-Scale Study of Sulfur Dioxide Emission From Combustion of Pulverized Coal Blends
,” Emerging Energy Technology: 14th Annual Energy-Sources Technology Conference, Houston, TX, Jan. 20–23, pp. 7–14.
24.
Arenillas
,
A.
,
Rubiera
,
F.
,
Arias
,
B.
,
Pis
,
J.
,
Faundez
,
J.
,
Gordon
,
A.
, and
Garcia
,
X.
,
2004
, “
A TG/DTA Study on the Effect of Coal Blending on Ignition Behaviour
,”
J. Therm. Anal. Calorim.
,
76
(
2
), pp.
603
614
.
25.
Baek
,
S. H.
,
Park
,
H. Y.
, and
Ko
,
S. H.
,
2014
, “
The Effect of the Coal Blending Method in a Coal Fired Boiler on Carbon in Ash and NOx Emission
,”
Fuel
,
128
, pp.
62
70
.
26.
Haas
,
J.
,
Tamura
,
M.
, and
Weber
,
R.
,
2001
, “
Characterisation of Coal Blends for Pulverised Fuel Combustion
,”
Fuel
,
80
(
9
), pp.
1317
1323
.
27.
Maier
,
H.
,
Spliethoff
,
H.
,
Kicherer
,
A.
,
Fingerle
,
A.
, and
Hein
,
K.
,
1994
, “
Effect of Coal Blending and Particle Size on NOx Emission and Burnout
,”
Fuel
,
73
(
9
), pp.
1447
1452
.
28.
Moon
,
C.
,
Sung
,
Y.
,
Eom
,
S.
, and
Choi
,
G.
,
2015
, “
NOx Emissions and Burnout Characteristics of Bituminous Coal, Lignite, and Their Blends in a Pulverized Coal-Fired Furnace
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
99
108
.
29.
Rubiera
,
F.
,
Arenillas
,
A.
,
Arias
,
B.
, and
Pis
,
J. J.
,
2002
, “
Modification of Combustion Behaviour and NO Emissions by Coal Blending
,”
Fuel Process. Technol.
,
77–78
, pp.
111
117
.
30.
Sahu
,
S.
,
Mukherjee
,
A.
,
Kumar
,
M.
,
Adak
,
A.
,
Sarkar
,
P.
,
Biswas
,
S.
,
Tiwari
,
H.
,
Das
,
A.
, and
Banerjee
,
P.
,
2014
, “
Evaluation of Combustion Behaviour of Coal Blends for Use in Pulverized Coal Injection (PCI)
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1014
1021
.
31.
Skorupska
,
N. M.
,
1993
,
Coal Specifications-Impact on Power Station Performance
,
IEA Coal Research
,
London
.
32.
Sheng
,
C.
,
Xu
,
M.
,
Zhang
,
J.
, and
Xu
,
Y.
,
2000
, “
Comparison of Sulphur Retention by Coal Ash in Different Types of Combustors
,”
Fuel Process. Technol.
,
64
(
1
), pp.
1
11
.
33.
Mitchell
,
R. E.
, and
Akanetuk
,
A. J.
,
1996
, “
The Impact of Fragmentation on Char Conversion During Pulverized Coal Combustion
,”
Symposium (International) on Combustion
, Elsevier,
26
(
2
), pp.
3137
3144
.
34.
Simons
,
G.
,
1988
, “
Parameters Limiting Sulfation by CaO
,”
AIChE J.
,
34
(
1
), pp.
167
170
.
35.
Fleig
,
D.
,
Andersson
,
K.
,
Johnsson
,
F.
, and
Leckner
,
B.
,
2011
, “
Conversion of Sulfur During Pulverized Oxy-Coal Combustion
,”
Energy Fuels
,
25
(
2
), pp.
647
655
.
36.
Kopparthi
,
V.
, and
Gollahalli
,
S.
,
1995
, “
Nitric Oxide Emission From Pulverized Coal Blend Flames
,”
ASME J. Energy Resour. Technol.
,
117
(
3
), pp.
228
233
.
37.
Pohl
,
J. H.
, and
Sarofim
,
A. F.
,
1977
, “
Devolatilization and Oxidation of Coal Nitrogen
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
491
501
.
38.
Spinti
,
J. P.
, and
Pershing
,
D. W.
,
2003
, “
The Fate of Char-N at Pulverized Coal Conditions
,”
Combust. Flame
,
135
(
3
), pp.
299
313
.
You do not currently have access to this content.