The influence of nanoparticles' dispersion on the physical properties of aviation fuel and its spray performance has been investigated in this work. To this end, the conventional Jet A-1 aviation fuel and its mixtures with alumina nanoparticles (nanofuel) at different weight concentrations are investigated. The key fuel physical properties such as density, viscosity, and surface tension that are of importance to the fuel atomization process are measured for the base fuel and nanofuels. The macroscopic spray features like spray cone angle and sheet breakup length are determined using the shadowgraph technique. The microscopic spray characteristics such as droplet diameter, droplet velocity, and their distributions are also measured by employing phase Doppler anemometry (PDA) technique. The spray performance is measured at two nozzle injection pressures of 0.3 and 0.9 MPa. The results show that with the increase in nanoparticle concentrations in the base fuel, the fuel viscosity and density increase, whereas the surface tension decreases. On the spray performance, the liquid sheet breakup length decreases with increasing nanoparticle concentrations. Furthermore, the mean droplet diameters of nanofuel are found to be lower than those of the base fuel.

References

1.
Wong
,
S.-C.
, and
Lin
,
A.-C.
,
1992
, “
Microexplosion Mechanisms of Aluminum/Carbon Slurry Droplets
,”
Combust. Flame
,
89
(
1
), pp.
64
76
.
2.
Baek
,
S. W.
, and
Cho
,
J. H.
,
1999
, “
Microexplosion of Aluminum Slurry Droplets
,”
Int. J. Heat Mass Transfer
,
42
(
24
), pp.
4475
4486
.
3.
Beloni
,
E.
,
Hoffmann
,
V. K.
, and
Dreizin
,
E. L.
,
2008
, “
Combustion of Decane-Based Slurries With Metallic Fuel Additives
,”
J. Propul. Power
,
24
(
6
), pp.
1403
1411
.
4.
Shalom
,
A.
, and
Gany
,
A.
,
1991
, “
Flammability Limits and Ballistic Properties of Fuel-Rich Propellants
,”
Propellants, Explos., Pyrotech.
,
16
(
2
), pp.
59
64
.
5.
Aly
,
Y.
,
Schoenitz
,
M.
, and
Dreizin
,
E. L.
,
2011
, “
Aluminum-Metal Reactive Composites
,”
Combust. Sci. Technol.
,
183
(
10
), pp.
1107
1132
.
6.
Beach
,
D. B.
,
Rondinone
,
A. J.
,
Sumpter
,
B. G.
,
Labinov
,
S. D.
, and
Richards
,
R. K.
,
2006
, “
Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
29
32
.
7.
Choi
,
S. U.
,
2009
, “
Nanofluids: From Vision to Reality Through Research
,”
ASME J. Heat Transfer
,
131
(
3
), p.
033106
.
8.
Sridhara
,
V.
, and
Satapathy
,
L. N.
,
2011
, “
Al2O3-Based Nanofluids: A Review
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
16
.
9.
Sergis
,
A.
, and
Hardalupas
,
Y.
,
2011
, “
Anomalous Heat Transfer Modes of Nanofluids: A Review Based on Statistical Analysis
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
37
.
10.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
.
11.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Maré
,
T.
,
Boucher
,
S.
, and
Angue Mintsa
,
H.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids—Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.
12.
Sajith
,
V.
,
Sobhan
,
C.
, and
Peterson
,
G.
,
2010
, “
Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel
,”
Adv. Mech. Eng.
,
2
, p.
581407
.
13.
Mehta
,
R. N.
,
Chakraborty
,
M.
, and
Parikh
,
P. A.
,
2014
, “
Nanofuels: Combustion, Engine Performance and Emissions
,”
Fuel
,
120
, pp.
91
97
.
14.
Gan
,
Y.
, and
Qiao
,
L.
,
2011
, “
Combustion Characteristics of Fuel Droplets With Addition of Nano and Micron-Sized Aluminum Particles
,”
Combust. Flame
,
158
(
2
), pp.
354
368
.
15.
Anbarasu
,
A.
,
Karthikeyan
,
A.
, and
Balaji
,
M.
,
2015
, “
Performance and Emission Characteristics of Diesel Engine Using Alumina Nanoparticle Blended Biodiesel Emulsion Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022203
.
16.
Pivkina
,
A.
,
Ulyanova
,
P.
,
Frolov
,
Y.
,
Zavyalov
,
S.
, and
Schoonman
,
J.
,
2004
, “
Nanomaterials for Heterogeneous Combustion
,”
Propellants, Explos., Pyrotech.
,
29
(
1
), pp.
39
48
.
17.
Yetter
,
R. A.
,
Risha
,
G. A.
, and
Son
,
S. F.
,
2009
, “
Metal Particle Combustion and Nanotechnology
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1819
1838
.
18.
Sonawane
,
S.
,
Patankar
,
K.
,
Fogla
,
A.
,
Puranik
,
B.
,
Bhandarkar
,
U.
, and
Kumar
,
S. S.
,
2011
, “
An Experimental Investigation of Thermo-Physical Properties and Heat Transfer Performance of Al2O3-Aviation Turbine Fuel Nanofluids
,”
Appl. Therm. Eng.
,
31
(
14
), pp.
2841
2849
.
19.
Javed
,
I.
,
Baek
,
S. W.
, and
Waheed
,
K.
,
2014
, “
Effects of Dense Concentrations of Aluminum Nanoparticles on the Evaporation Behavior of Kerosene Droplet at Elevated Temperatures: The Phenomenon of Microexplosion
,”
Exp. Therm. Fluid Sci.
,
56
, pp.
33
44
.
20.
Javed
,
I.
,
Baek
,
S. W.
, and
Waheed
,
K.
,
2015
, “
Autoignition and Combustion Characteristics of Heptane Droplets With the Addition of Aluminium Nanoparticles at elevated temperatures
,”
Combust. Flame
,
162
(
1
), pp.
191
206
.
21.
Kumar
,
R.
, and
Milanova
,
D.
,
2009
, “
Effect of Surface Tension on Nanotube Nanofluids
,”
Appl. Phys. Lett.
,
94
(
7
), p.
073107
.
22.
Vafaei
,
S.
,
Purkayastha
,
A.
,
Jain
,
A.
,
Ramanath
,
G.
, and
Borca-Tasciuc
,
T.
,
2009
, “
The Effect of Nanoparticles on the Liquid–Gas Surface Tension of Bi2Te3 Nanofluids
,”
Nanotechnology
,
20
(
18
), p.
185702
.
23.
Tanvir
,
S.
, and
Qiao
,
L.
,
2012
, “
Surface Tension of Nanofluid-Type Fuels Containing Suspended Nanomaterials
,”
Nanoscale Res. Lett.
,
7
(
1
), pp.
1
10
.
24.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-w.
, and
Alvarado
,
J. L.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
25.
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2014
, “
Effect of Fuel Properties on Spray Characteristics of Alternative Jet Fuels Using Global Sizing Velocimetry
,”
Atomization Sprays
,
24
(
7
), pp.
575
597
.
26.
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2014
, “
Experimental Investigation of Spray Characteristics of Alternative Aviation Fuels
,”
Energy Convers. Manage.
,
88
, pp.
1060
1069
.
27.
Lefebvre
,
A.
,
1988
,
Atomization and Sprays
,
CRC Press
, Boca Raton, FL.
28.
Negeed
,
E.-S. R.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2011
, “
Experimental and Analytical Investigation of Liquid Sheet Breakup Characteristics
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
95
106
.
29.
Jeandel
,
X.
, and
Dumouchel
,
C.
,
1999
, “
Influence of the Viscosity on the Linear Stability of an Annular Liquid Sheet
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
499
506
.
30.
Lee
,
J.
,
Saha
,
A.
,
Basu
,
S.
, and
Kumar
,
R.
,
2012
, “
Effects of Injection Pressure on Spray Atomization Characteristics With Measurement Technique Cross-Validation
,”
12th Triennial International Conference on Liquid Atomization and Spray Systems
, Heidelberg, Germany, Sept. 2-6, pp.
2
6
.
You do not currently have access to this content.