The rheological properties of the drilling fluid play a key role in controlling the drilling operation. Knowledge of drilling fluid rheological properties is very crucial for drilling hydraulic calculations required for hole cleaning optimization. Measuring the rheological properties during drilling sometimes is a time-consuming process. Wrong estimation of these properties may lead to many problems, such as pipe sticking, loss of circulation, and/or well control issues. The aforementioned problems increase the non-productive time and the overall cost of the drilling operations. In this paper, the frequent drilling fluid measurements (mud density, Marsh funnel viscosity (MFV), and solid percent) are used to estimate the rheological properties of bentonite spud mud. Artificial neural network (ANN) technique was combined with the self-adaptive differential evolution algorithm (SaDe) to develop an optimum ANN model for each rheological property using 1029 data points. The SaDe helped to optimize the best combination of parameters for the ANN models. For the first time, based on the developed ANN models, empirical equations are extracted for each rheological parameter. The ANN models predicted the rheological properties from the mud density, MFV, and solid percent with high accuracy (average absolute percentage error (AAPE) less than 5% and correlation coefficient higher than 95%). The developed apparent viscosity model was compared with the available models in the literature using the unseen dataset. The SaDe-ANN model outperformed the other models which overestimated the apparent viscosity of the spud drilling fluid. The developed models will help drilling engineers to predict the rheological properties every 15–20 min. This will help to optimize hole cleaning and avoid pipe sticking and loss of circulation where bentonite spud mud is used. No additional equipment or special software is required for applying the new method.

References

1.
Caenn
,
R.
,
Darley
,
H.
, and
Gray
,
G.
,
2017
,
Composition and Properties of Drilling and Completion Fluids
, 7th ed.,
Gulf Professional Publishing
, Waltham, MA.
2.
Schlumberger Oilfield Glossary
,
2018
, “
Spud Mud
,” accessed Mar. 13, 2018 https://www.glossary.oilfield.slb.com/en/Terms/s/spud_mud.aspx
3.
Cheraghian
,
G.
,
Wu
,
Q.
,
Mostofi
,
M.
,
Li
,
M.
,
Afrand
,
M.
, and
Sangwai
,
J. S.
,
2018
, “
Effect of a Novel Clay/silica Nanocomposite on Water-Based Drilling Fluids: Improvements in Rheological and Filtration Properties
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
555
, pp.
339
350
.
4.
Saasen
,
A.
,
Dahl
,
B.
, and
Jødestøl
,
K.
,
2012
, “
Particle Size Distribution of Top-Hole Drill Cuttings From Norwegian Sea Area Offshore Wells
,”
Part. Sci. Technol.
,
31
(
1
), pp.
85
91
.
5.
Cheraghian
,
G.
,
Hemmati
,
M.
, and
Bazgir
,
S.
,
2014
, “
Application of TiO2 and Fumed Silica Nanoparticles and Improve the Performance of Drilling Fluids
,”
AIP Conf. Proc.
,
1590
(
1
), pp.
266
270
.
6.
Outmans
,
H. D.
,
1957
, “
Mechanics of Differential Pressure Sticking of Drill Collars
,”
Annual Fall Meeting of Southern California Petroleum Section in Los Angeles
, CA, Oct. 17–18, SPE Paper No. SPE-963-G.
7.
Bourgoyne
,
A. T.
,
Cheever
,
M. E.
,
Mulheim
,
K. K.
, and
Young
,
F. S.
,
1991
,
Applied Drilling Engineering
(
SPE Textbook Series, Vol. 2), Society of Petroleum Engineers
, Richardson, TX.
8.
Power
,
D.
, and
Zamora
,
M.
,
2003
, “
Drilling Fluid Yield Stress: Measurement Techniques for Improved Understanding of Critical Drilling Fluid Parameters
,”
AADE National Technology Conference: Practical Solutions for Drilling Challenges
, Houston, TX, Apr. 1–3, Paper No.
AADE-03-NTCE-35
.http://www.aade.org/app/download/7238841177/AADE-03-NTCE-35-Power.pdf
9.
Mitchell
,
R. F.
, and
Miska
,
S. Z.
,
2011
,
Fundamentals of Drilling Engineering
,
Society of Petroleum Engineers
, Richardson, TX.
10.
Hussaini
,
S. M.
, and
Azar
,
J. J.
,
1983
, “
Experimental Study of Drilled Cutting Transport Using Common Drilling Muds
,”
SPE J.
,
23
(
1
), pp.
11
20
.
11.
Cheraghian
,
G.
,
2017
, “
Application of Nano-Particles of Clay to Improve Drilling Fluid
,”
Int. J. Nanosci. Nanotechnol.
,
13
(
2
), pp.
177
86
.http://www.ijnnonline.net/article_25616.html
12.
Mishra
,
D.
,
2016
,
Drilling Fluids Processing Handbook
,
Scitus Academics
,
Valley Cottage, NY
.
13.
Marsh
,
H.
,
1931
, “
Properties and Treatment of Rotary Mud
,”
Trans. AIME.
,
92
(
01
), pp.
234
251
.
14.
Pitt
,
M. J.
,
2000
, “
The Marsh Funnel and Drilling Fluid Viscosity: A New Equation for Field Use
,”
SPE Drill. Completion.
,
15
(
1
), pp.
3
6
.
15.
Almahdawi
,
F. H.
,
Al-Yaseri
,
A. Z.
, and
Jasim
,
N.
,
2014
, “
Apparent Viscosity Direct From Marsh Funnel Test
,”
Iraqi J. Chem. Pet. Eng.
,
15
(
1
), pp.
51
57
.https://www.iasj.net/iasj?func=fulltext&aId=86359
16.
Velazquez
,
G. J.
,
Escalona Quintero
,
C. J.
, and
Gimenez
,
E. R.
,
2012
, “
Production Monitoring Using Artificial Intelligence
,”
SPE Intelligent Energy International
, Utrecht, The Netherlands, Mar. 27–29, SPE Paper No.
SPE-149594-MS
.
17.
Weiss
,
W. W.
,
Balch
,
R. S.
, and
Stubbs
,
B. A.
,
2002
, “
How Artificial Intelligence Methods Can Forecast Oil Production
,”
SPE/DOE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 13–17, SPE Paper No.
SPE-75143-MS
.
18.
Al-arfaj
,
M. K.
,
Abdulraheem
,
A.
, and
Busaleh
,
Y. R.
,
2012
, “
Estimating Dewpoint Pressure Using Artificial Intelligence
,”
SPE Saudi Arabia Section Young Professionals Technical Symposium
, Dhahran, Saudi Arabia, Mar. 19–21, SPE Paper No.
SPE-160919-MS
.
19.
Elkatatny
,
S. M.
,
2017
, “
Real Time Prediction of Rheological Parameters of KCl Water-Based Drilling Fluid Using Artificial Neural Network
,”
Arabian J. Sci. Eng.
,
42
(
4
), pp.
1655
1665
.
20.
Khaksar
,
A.
,
Rostami
,
H.
,
Moein
,
S.
, and
Rezaei
,
H.
,
2016
, “
Application of Artificial Neural Network–Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression–Particle Swarm Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032903
.
21.
AlAjmi
,
M.
,
Abdulraheem
,
A.
,
Mishkhes
,
A. T.
, and
Al-Shammari
,
M. J.
,
2015
, “
Profiling Downhole Casing Integrity Using Artificial Intelligence
,”
The SPE Digital Energy Conference and Exhibition
, The Woodlands, TX, Mar. 3–5, SPE Paper No.
SPE-173422-MS
.
22.
Al-Thuwaini
,
J.
,
Zangl
,
G.
, and
Phelps
,
R. E.
,
2006
, “
Innovative Approach to Assist History Matching Using Artificial Intelligence
,”
Intelligent Energy Conference and Exhibition
, Amsterdam, The Netherlands, Apr. 11–13, SPE Paper No.
SPE-99882-MS
.
23.
Shahkarami
,
A.
,
Mohaghegh
,
S. D.
,
Gholami
,
V.
, and
Haghighat
,
S. A.
,
2014
, “
Artificial Intelligence (AI) Assisted History Matching
,”
SPE Western North American and Rocky Mountain Joint Meeting
, Denver, CO, Apr. 17–18, SPE Paper No.
SPE-169507-MS
.
24.
Saggaf
,
M. M.
, and
Nebrija
,
E. L.
,
1998
, “
Estimation of Lithologies and Depositional Facies From Wireline Logs
,”
SEG Annual Meeting
, New Orleans, LA, Sept. 13–18, Paper No.
SEG-1998-0288
.https://library.seg.org/doi/abs/10.1190/1.1820405
25.
Wu
,
X.
, and
Nyland
,
E.
,
1986
, “
Well Log Data Interpretation Using Artificial Intelligence Technique
,”
SPWLA 27th Annual Logging Symposium
, Houston, TX, June 9–13, Paper No.
SPWLA-1986-M
.https://www.onepetro.org/conference-paper/SPWLA-1986-M
26.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
.
27.
Lim
,
J.-S.
,
Kang
,
J. M.
, and
Kim
,
J.
,
1998
, “
Artificial-Intelligence Approach for Well-to-Well Log Correlation
,”
SPE India Oil and Gas Conference and Exhibition
, New Delhi, India, Feb. 17–19, SPE Paper No.
SPE-1198-0030-JPT
.
28.
Denney
,
D.
,
1998
, “
Artificial-Intelligence Approach for Well-To-Well Log Correlation
,”
J. Pet. Technol.
,
50
(
11
), pp.
30
32
.
29.
Wiener
,
J.
,
Rogers
,
J.
, and
Moll
,
B.
,
1995
, “
Predict Permeability From Wireline Logs Using Neural Networks
,”
Pet. Engineer Int.
,
68
(
5
), pp.
777
787
.https://www.osti.gov/biblio/49297-predict-permeability-from-wireline-logs-using-neural-networks
30.
Abdulhameed
,
A.
,
Elkatatny
,
S. M.
,
Mahmoud
,
M. A.
,
Aburesh
,
M.
,
Abdulraheem
,
A.
, and
Ali
,
A.
,
2017
, “
Determination of the Total Organic Carbon (TOC) Based on Conventional Well Logs Using Artificial Neural Network
,”
Int. J. Coal Geol.
,
179
, pp.
72
80
.
31.
Allain
,
O.
, and
Houze
,
O. P.
,
1992
, “
A Practical Artificial Intelligence Application in Well Test Interpretation
,”
European Petroleum Computer Conference
, Stavanger, Norway, May 24–27, SPE Paper No.
SPE-24287-MS
.
32.
Houze
,
O. P.
, and
Allain
,
O. F.
,
1992
, “
A Hybrid Artificial Intelligence Approach in Well Test Interpretation
,”
SPE Annual Technical Conference and Exhibition
, Washington, DC, Oct. 4–7, SPE Paper No.
SPE-24733-MS
.
33.
Ahmadi
,
R.
,
Shahrabi
,
J.
, and
Aminshahidy
,
B.
,
2017
, “
Automatic Well-Testing Model Diagnosis and Parameter Estimation Using Artificial Neural Networks and Design of Experiments
,”
J. Petrol Explor. Prod. Technol.
,
7
(
3
), pp. 759–783.
34.
Elkatatny
,
S.
, and
Mahmoud
,
M.
,
2018
, “
Development of a New Correlation for Bubble Point Pressure in Oil Reservoirs Using Artificial Intelligent Technique
,”
Arabian J. Sci. Eng.
,
43
(
5
), pp.
2491
2500
.
35.
El Ouahed
,
A. K.
,
Tiab
,
D.
,
Mazouzi
,
A.
, and
Jokhio
,
S. A.
,
2003
, “
Application of Artificial Intelligence to Characterize Naturally Fractured Reservoirs
,”
SPE International Improved Oil Recovery Conference in Asia Pacific
, Kuala Lumpur, Malaysia, Oct. 20–21, SPE Paper No.
SPE-84870-MS
.
36.
Kumar
,
A.
,
2012
, “
Artificial Neural Network as a Tool for Reservoir Characterization and Its Application in the Petroleum Engineering
,”
Offshore Technology Conference
, Houston, TX, Apr. 30–May 3, Paper No.
OTC-22967-MS
.
37.
Van
,
S.
, and
Chon
,
B.
,
2017
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
38.
Wang
,
Y.
, and
Salehi
,
S.
,
2015
, “
Application of Real-Time Field Data to Optimize Drilling Hydraulics Using Neural Network Approach
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), pp.
62903
62909
.
39.
Graves
,
A.
,
Liwicki
,
M.
,
Fernández
,
S.
,
Bertolami
,
R.
,
Bunke
,
H.
, and
Schmidh
,
J.
,
2009
, “
A Novel Connectionist System for Unconstrained Handwriting Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
31
(
5
), pp.
855
868
.
40.
Lippmann
,
R.
,
1987
, “
An Introduction to Computing With Neural Nets
,”
IEEE ASSP Mag.
,
4
(
2
), pp.
4
22
.
41.
Hinton
,
G. E.
,
Osindero
,
S.
, and
The
,
Y. W.
,
2006
, “
A Fast Learning Algorithm for Deep Belief Nets
,”
Neural Comput.
,
18
(
7
), pp.
1527
54
.
42.
Niculescu
,
S. P.
,
2003
, “
Artificial Neural Networks and Genetic Algorithms in QSAR
,”
J. Mol. Struct.
,
622
(
1–2
), pp.
71
83
.
43.
Liew
,
S. S.
,
Khalil-Hani
,
M.
, and
Bakhteri
,
R.
,
2016
, “
An Optimized Second Order Stochastic Learning Algorithm for Neural Network Training
,”
Neurocomputing
,
186
, pp.
74
89
.
44.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
45.
Deng
,
W.
,
Yang
,
X.
,
Zou
,
L.
,
Wang
,
M.
,
Liu
,
Y.
, and
Li
,
Y.
,
2013
, “
An Improved Self-Adaptive Differential Evolution Algorithm and Its Application
,”
Chemom. Intell. Lab. Syst.
,
128
, pp.
66
76
.
46.
Qin
,
A. K.
,
Huang
,
V. L.
, and
Suganthan
,
P. N.
,
2009
, “
Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization
,”
IEEE Trans. Evol. Comput.
,
13
(
2
), pp.
398
417
.
47.
Bingham
,
E. C.
,
1922
,
Fluidity and Plasticity
,
McGraw-Hill
,
New York
.
48.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
49.
Whittaker
,
A.
,
1985
,
The EXLOG Series of Petroleum Geology and Engineering: Handbooks Theory and Application of Drilling Fluid Hydraulics
,
D. Reidel Publishing
,
Dordrecht, The Netherlands
.
50.
Metzner
,
A. B.
,
1956
, “
Non-Newtonian Technology: Fluid Mechanics and Transfers
,”
Advances in Chemical Engineering
,
Academic Press
,
New York
.
You do not currently have access to this content.