Abstract

In this study, research was carried out on absorber (in and exit) in the wet flue gas desulfurization (WFGD) system of a local thermal power plant. WFGD plays a vital role in terms of environment since it includes water, chloride ion, gypsum, and coal ash. In the progress of WFGD in power plants, absorber has the key role of SO2 removal. This study focuses on modeling of the absorber in the WFGD system. In the context of this study, sample from absorber in limestone slurry was analyzed based on particle size distribution (PSD) and elemental composition, and a model was proposed to predict SO2 removal rate. The model proposed employs basically the parameters previously proposed by some researchers, and in addition, the PSD, i.e., size parameters like D32 and D43. The model proposed is in good agreement with the results obtained.

References

1.
Zhong
,
Y.
,
Gao
,
X.
,
Huo
,
W.
,
Luo
,
Z.
,
Ni
,
M.
, and
Cen
,
K.
,
2008
, “
A Model for Performance Optimization of Wet Flue Gas Desulfurization Systems of Power Plants
,”
Fuel Process. Technol.
,
89
(
11
), pp.
1025
1032
. 10.1016/j.fuproc.2008.04.004
2.
Nolan
,
P. S.
,
Redinger
,
K. E.
,
Amrhein
,
G. T.
, and
Kudlac
,
G. A.
,
2004
, “
Demonstration of Additive Use for Enhanced Mercury Emissions Control in Wet FGD Systems
,”
Fuel Process. Technol.
,
85
(
6–7
), pp.
587
600
. 10.1016/j.fuproc.2003.11.009
3.
Nygaard
,
H. G.
,
Kiil
,
S.
,
Johnsson
,
J. E.
,
Jensen
,
J. N.
,
Hansen
,
J.
,
Fogh
,
F.
, and
Johansen
,
K. D.
,
2004
, “
Full-Scale Measurements of SO2 Gas Phase Concentrations and Slurry Compositions in Awet Flue Gas Desulphurisation Spray Absorber
,”
Fuel
,
83
(
9
), pp.
1151
1164
. 10.1016/j.fuel.2003.12.007
4.
Jin
,
D. S.
,
Deshwal
,
B. R.
,
Park
,
Y. S.
, and
Lee
,
H. Y.
,
2006
, “
Simultaneous Removal of SO2 and NO by Wet Scrubbing Using Aqueous Chlorine Dioxide Solution
,”
J. Hazard. Mater
,
135
(
1–3
), pp.
412
417
. 10.1016/j.jhazmat.2005.12.001
5.
Bilen
,
M.
,
Kizgut
,
S.
, and
Toroglu
,
I.
,
2016
, “
Waste Water Treatment with Hydrocyclones in Power Plants
,”
EWMS Eurasia Waste Management Symposium (Poster Presentation)
,
İstanbul
,
May 2–4
.
6.
Cordoba
,
P.
,
2015
, “
Status of Flue Gas Desulphurization (FGD) Systems From Coal-Fired Power Plants: Overview of the Physic-Chemical Control of Wet Limestone FGDs
,”
Fuel
,
144
, pp.
274
286
. 10.1016/j.fuel.2014.12.065
7.
Babcock & Wilcox Power Generation Group (B&W)
,
1991
,
Steam–Its Generation and Use
, 40th ed.,
Babcock and Wilcox Company
,
Barbeton, OH
, p.
980
.
8.
Brogren
,
C.
, and
Karlsson
,
H. T.
,
1997
, “
A Model for Prediction of Limestone Dissolution in Wet Flue Gas Desulfurization Applications
,”
Ind. Eng. Chem. Res.
,
36
(
9
), pp.
3889
3897
. 10.1021/ie970030j
9.
Selene
,
M. A.
,
Guelli
,
U. S.
,
Fabiane
,
B. F. S.
,
Antonio
,
A. U. S.
, and
Fernando
,
V. B.
,
2010
, “
Limestone Dissolution in Flue Gas Desulfurization-Experimental and Numerical Study
,”
J. Chem. Technol. Biotechnol.
,
85
(
9
), pp.
1208
1214
. 10.1002/jctb.2418
10.
Jarvis
,
J. B.
,
Meserole
,
F. B.
,
Selm
,
T. J.
,
Rochelle
,
G. T.
,
Gage
,
C. T.
, and
Moser
,
R. E.
,
1988
, “
Development of a Predictive Model for Limestone Dissolution in Wet FGD Systems
,”
Presented at EPA/EPRI First Combined FGD and Dry SO2 Control Symposium
,
St. Louis, MO
,
Oct. 25–28
.
11.
Gage
,
C. L.
, and
Rochelle
,
G. T.
,
1992
, “
Limestone Dissolution in Flue Gas Scrubbing: Effect of Sulfite
,”
J. Waste Manage Assoc.
,
42
(
7
), pp.
926
935
. 10.1080/10473289.1992.10467043
12.
Chan
,
P. K.
, and
Rochelle
,
G. T.
,
1982
, “
Limestone Dissolution Rates: Effects of pH, CO2, and Buffers Modeled by Mass Transfer
,”
ACS Symposium Series 188
;
American Chemical Society
,
Washington, DC
, p.
75
.
13.
Rochelle
,
G. T.
,
Weems
,
W. T.
,
Smith
,
R. J.
, and
Hsiang
,
M. W.
,
1982
, “
Buffer Additives for Lime/Limestone Slurry Scrubbing
,”
ASC Symp. Ser.
,
188
(
Chapter 12
), pp.
243
265
.
14.
Chang
,
J. C. S.
, and
Mobley
,
J. D.
,
1983
, “
Testing and Commercialization of Byproduct Dibasic Acids as Buffer Additives for Limestone Flue Gas Desulfurization Systems
,”
J. Air Pollut. Control Assoc.
,
33
(
10
), pp.
955
962
. 10.1080/00022470.1983.10465677
15.
Chi
,
C. T.
, and
Lester
,
H.
,
1989
, “
Utilization of Adipic Acid Byproducts for Energy Recovery and Enhancement of Flue gas Desulfurization
,”
Environ. Prog.
,
8
(
4
), pp.
223
226
. 10.1002/ep.3300080413
16.
Walsh
,
M. A.
,
Mengel
,
M. L.
,
Evans
,
A. G.
,
Cavallari
G.
,
Bienati
M.
,
Cavezzale
P.
2006
Parameters Impacting Limestone Dissolutions in FGD Systems
,”
Marsulex Environmental Technologies, Corp and Termokimik Corporation—Impianti e Procedimenti Industriali SpA
.
17.
Ortiz
,
G. F. J.
,
Vidal
,
F.
,
Ollero
,
P.
,
Salvador
,
L.
,
Cortés
,
V.
, and
Giménez
,
A.
,
2006
, “
Pilot Plant Technical Assessment of Wet Flue Gas Desulfurization Using Limestone
,”
Ind. Eng. Chem. Res.
,
45
(
4
), pp.
1466
1477
. 10.1021/ie051316o
18.
Eden
,
D.
, and
Luckas
,
M.
,
1998
, “
A Heat and Mass Transfer Model for the Simulation of the Wet Limestone Flue Gas Scrubbing Process
,”
Chem. Eng. Technol.
,
21
(
1
), pp.
56
60
. 10.1002/(SICI)1521-4125(199801)21:1<56::AID-CEAT56>3.0.CO;2-9
19.
Gerbec
,
M.
,
Stergarsek
,
A.
, and
Kocjancic
,
R.
,
1995
, “
Simulation Model of Wet Flue Gas Desulphurization Plant
,”
Comput. Chem. Eng.
,
19
(
1
), pp.
283
286
. 10.1016/0098-1354(95)87050-4
20.
Hrastel
,
I.
,
Gerbec
,
M.
, and
Stergarsek
,
A.
,
2007
, “
Technology Optimization of Wet Flue Gas Desulphurization Process
,”
Chem. Eng. Technol.
,
30
(
2
), pp.
220
233
. 10.1002/ceat.200600314
21.
Kong
,
H.
,
2001
,
Experimental and Theoretical Study on Limestone Wet Flue Gas Desulfurization
,
Zhejiang University
,
Hangzhou
.
22.
Pan
,
D.
,
Wu
,
H.
, and
Yang
,
L.
,
2017
, “
Effect of Gypsum Crystallization Characteristics on Fine Particle Emission After Desulfurization
,”
Asia-Pac. J. Chem. Eng.
,
12
(
4
), pp.
573
581
. 10.1002/apj.2099
23.
Gonul
,
H. I.
,
2017
, “
Termik Santral Baca Gazi Desülfürizasyon Sistemlerinde Gypsum’un Susuzlaştirilmasi Gypsum Dewatering On Flue Gas Desulfurization System in Coal Fired Plant
,”
M. Sc. thesis
,
Zonguldak Bülent Ecevit University
,
Zonguldak, Turkey
.
24.
Cordoba
,
P.
,
Ochoa-González
,
R.
,
Font
,
O.
,
Izquierdo
,
M.
,
Querol
,
X.
,
Leiva
,
C.
,
Lopez-Anton
,
M. A.
,
Diaz-Somoano
,
M.
,
Martinez-Tarazona
,
M. R.
,
Constantino
,
F.
, and
Tomás
,
A.
,
2012
, “
Partitioning of Trace Inorganic Elements in a Coal-Fired Power Plant Equipped With a Wet Flue Gas Desulphurisation System
,”
Fuel
,
92
(
1
), pp.
145
157
. 10.1016/j.fuel.2011.07.025
25.
Kiil
,
S.
,
Nygaards
,
H.
, and
Johnsson
,
J. E.
,
2002
, “
Simulation Studies of the Influence of HCl Absorption on the Performance of a Wet Flue Gas Desulphurization Pilot Plant
,”
Chem. Eng. Sci.
,
57
(
3
), pp.
347
354
. 10.1016/S0009-2509(01)00387-6
26.
Toprac
,
A. J.
, and
Rochelle
,
G. T.
,
1982
, “
Limestone Dissolution in Stack Gas Desulfurization
,”
Environ. Prog.
,
1
(
1
), pp.
52
58
.
27.
Chang
,
C. S.
, and
Dempsey
,
J. H.
,
1982
, “
Effect of Limestone Type and Grind on SO2 Scrubber Performance
,”
Environ. Prog.
,
1
(
1
), pp.
59
64
. 10.1002/ep.670010114
28.
Gage
,
C. L.
,
1989
, “
Limestone Dissolution in Modelling of Slurry for Flue Gas Desulfurization
,”
PhD thesis
,
University of Texas
,
Austin, TX
.
29.
Allers
,
T.
,
Luckas
,
M.
, and
Schmidt
,
K. G.
,
2003
, “
Modeling and Measurement of the Dissolution Rate of Solid Particles in Aqueous Suspension—Part II: Experimental Results and Validation
,”
Chem. Eng. Technol.
,
26
(
12
), pp.
1225
1229
. 10.1002/ceat.200303008
30.
Frandsen
,
J. B. W.
,
Kiil
,
S.
, and
Johnsson
,
J. E.
,
2001
, “
Optimisation of a Wet FGD Pilot Plant Using Fine Limestone and Organic Acids
,”
Chem. Eng. Sci.
,
56
(
10
), pp.
3275
3287
. 10.1016/S0009-2509(01)00010-0
31.
Hosten
,
C.
, and
Gulsun
,
M.
,
2004
, “
Reactivity of Limestone From Different Sources in Turkey
,”
Min. Eng.
,
17
(
1
), pp.
97
99
. 10.1016/j.mineng.2003.10.009
32.
Warych
,
J.
, and
Szymanowski
,
M.
,
2001
, “
Model of Wet Limestone Flue Gas Desulfurization Process for Cost Optimization
,”
Ind. Eng. Chem. Res.
,
40
(
12
), pp.
2597
2605
. 10.1021/ie0005708
33.
Ukawa
,
N.
,
Takashina
,
T.
,
Shinoda
,
N.
, and
Shimizu
,
T.
,
1993
, “
Effects of Particle Size Distribution on Limestone Dissolution in Wet FGD Process Applications
,”
Environ. Prog.
,
12
(
3
), pp.
238
242
. 10.1002/ep.670120314
34.
Kikkawa
,
H.
,
Nakamoto
,
T.
,
Morishita
,
M.
, and
Yamada
,
K.
,
2002
, “
New Wet FGD Process Using Granular Limestone
,”
Ind. Eng. Chem. Res.
,
41
(
12
), pp.
3028
3036
. 10.1021/ie0109760
35.
Sheng-yu
,
L.
,
Bin
,
Q.
,
Jin
,
G.
,
Jian-ying
,
L.
,
Zhi-xiang
,
Y.
,
Cheng-hua
,
X
.,
2009
, “
New Limestone-Gypsum Flue Gas Desulfurization Technology
,”
2009 International Conference on Energy and Environment Technology
,
Guilin
,
Oct. 16–18
, pp.
78
81
. 10.1109/ICEET.2009.485
You do not currently have access to this content.