Abstract

In this study, torrefaction of pellets formed from furniture work dusts collected as a part of space cleaning actions in the industry has been examined. Burning behavior of torrefied dusts and lignite blends was studied. Torrefaction experiments were done under a nitrogen atmosphere for 1 h at temperatures of 220, 260, and 300 °C which corresponded to light, mild, and severe torrefaction, respectively. Combustion of blend pellets prepared by adding lignite in specific ratios to powders of torrefied pellets was carried out at 700 °C initial temperature using a vertical furnace system through which air was flowing in natural convection. Ignition times of blend pellets were affected by volatile matter and moisture contents. Volatile matter combustion rates were lower than those of raw waste, and accordingly, combustion times were higher. However, no relation between volatile matter combustion rates and times was observed. Blending raw or torrefied furniture work dusts with lignite have significantly influenced volatile matter and carbon combustion periods. There was no relation between carbon combustion rates and times. It was concluded that blend pellets of mild or severe torrefaction products of furniture work dusts and lignite behaved similarly to lignite during combustion.

References

1.
Agbor
,
E.
,
Zhang
,
X.
, and
Kumar
,
A.
,
2014
, “
A Review of Biomass Co-firing in North America
,”
Renewable Sustainable Energy Rev.
,
40
, pp.
930
943
. 10.1016/j.rser.2014.07.195
2.
Rokni
,
E.
,
Ren
,
X.
,
Panahi
,
A.
, and
Levendis
,
Y. A.
,
2018
, “
Emissions of SO2, NOx, CO2, and HCl From Co-firing of Coals With Raw and Torrefied Biomass Fuels
,”
Fuel
,
211
, pp.
363
374
. 10.1016/j.fuel.2017.09.049
3.
Uris
,
M.
,
Linares
,
J. I.
, and
Arenas
,
E.
,
2014
, “
Techno-economic Feasibility Assessment of a Biomass Cogeneration Plant Based on an Organic Rankine Cycle
,”
Renew. Energy
,
66
, pp.
707
713
. 10.1016/j.renene.2014.01.022
4.
Yaman
,
S.
,
2004
, “
Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks
,”
Energy Convers. Manage
,
45
(
5
), pp.
651
671
. 10.1016/S0196-8904(03)00177-8
5.
Sami
,
M.
,
Annamalai
,
K.
, and
Wooldridge
,
M.
,
2001
, “
Co-firing of Coal and Biomass Fuel Blends
,”
Prog. Energy Combust.
,
27
(
2
), pp.
171
214
. 10.1016/S0360-1285(00)00020-4
6.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2008
, “
Effect of Co-combustion on the Burnout of Lignite/Biomass Blends: A Turkish Case Study
,”
Waste Manage
,
28
(
11
), pp.
2077
2084
. 10.1016/j.wasman.2007.08.028
7.
Varol
,
M.
,
Atimtay
,
A. T.
,
Bay
,
B.
, and
Olgun
,
H.
,
2010
, “
Investigation of Co-combustion Characteristics of Low Quality Lignite Coals and Biomass With Thermogravimetric Analysis
,”
Thermochim. Acta
,
510
(
1–2
), pp.
195
201
. 10.1016/j.tca.2010.07.014
8.
Vamvuka
,
D.
,
Chatib
,
N. E.
, and
Stakiotakis
,
S. I.
,
2011
, “
Measurements of Ignition Point and Combustion Characteristics of Biomass Fuels and Their Blends With Lignite
,”
Proceedings of the 5rd European Combustion Meeting
,
London, England
,
June 28–30
, pp.
1
6
.
9.
Kocabas-Ataklı
,
,
Okyay-Öner
,
F.
, and
Yürüm
,
Y.
,
2014
, “
Combustion Characteristics of Turkish Hazelnut Shell Biomass, Lignite Coal, and Their Respective Blends via Thermogravimetric Analysis
,”
J. Therm. Anal. Calorim
,
119
(
3
), pp.
1723
1729
. 10.1007/s10973-014-4348-4
10.
Moon
,
C.
,
Sung
,
Y.
,
Ahn
,
S.
,
Kim
,
T.
,
Choi
,
G.
, and
Kim
,
D.
,
2013
, “
Thermochemical and Combustion Behaviors of Coals of Different Ranks and Their Blends for Pulverized-Coal Combustion
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
111
119
. 10.1016/j.applthermaleng.2013.01.009
11.
Özyoğuran
,
A.
,
Haykiri-Acma
,
H.
, and
Dahiloğlu
,
E.
,
2014
, “
Production of Fuel Briquettes From Rice Husk–Lignite Blends
,”
Environ. Prog. Sustain
,
36
(
3
), pp.
482
489
. 10.1002/ep.12429
12.
Duranay Deveci
,
N.
,
Yılgın
,
M.
, and
Pehlivan
,
D.
,
2008
, “
Co-combustion of Pellets From Soma Lignite and Waste Dusts of Furniture Works
,”
Int. J. Green. Energy
,
5
(
6
), pp.
456
465
. 10.1080/15435070802498069
13.
Chen
,
W. H.
,
Peng
,
J.
, and
Bi
,
X. T.
,
2015
, “
A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications
,”
Renewable Sustainable Energy Rev.
,
44
, pp.
847
866
. 10.1016/j.rser.2014.12.039
14.
Rousset
,
P.
,
Macedo
,
L.
,
Commandré
,
J. M.
, and
Moreira
,
A.
,
2012
, “
Biomass Torrefaction Under Different Oxygen Concentrations and Its Effect on the Composition of the Solid By-product
,”
J. Anal. Appl. Pyrol.
,
96
, pp.
86
91
. 10.1016/j.jaap.2012.03.009
15.
Chen
,
W. H.
,
Ye
,
S. C.
, and
Sheng
,
H. K.
,
2012
, “
Hydrothermal Carbonization of Sugarcane Bagasse via Wet Torrefaction in Association With Microwave Heating
,”
Bioresource. Technol.
,
118
, pp.
195
203
. 10.1016/j.biortech.2012.04.101
16.
Dudyński
,
M.
,
Van Dyk
,
JC
,
Kwiatkowski
,
K.
, and
Sosnowska
,
M.
,
2015
, “
Biomass Gasification: Influence of Torrefaction on Syngas Production and Tar Formation
,”
Fuel Process. Technol.
,
131
, pp.
203
212
. 10.1016/j.fuproc.2014.11.018
17.
Ren
,
S.
,
Lei
,
H.
,
Wang
,
L.
,
Bu
,
Q.
,
Wei
,
Y.
,
Liang
,
J.
,
Liu
,
Y.
,
Julson
,
J.
,
Chen, Wu
,
J.
, and
Ruan
,
R.
,
2012
, “
Microwave Torrefaction of Douglas Fir Sawdust Pellets
,”
Energy(Fuels)
,
26
(
9
), pp.
5936
5943
. 10.1021/ef300633c
18.
Li
,
H.
,
Liu
,
X.
,
Legros
,
R.
,
Bi
,
X. T.
,
Lim
,
C. J.
, and
Sokhansanj
,
S.
,
2012
, “
Pelletization of Torrefied Sawdust and Properties of Torrefied Pellets
,”
Appl. Energy
,
93
, pp.
680
685
. 10.1016/j.apenergy.2012.01.002
19.
Kumar
,
L.
,
Koukoulas
,
A. A.
,
Mani
,
S.
, and
Satyavolu
,
J.
,
2017
, “
Integrating Torrefaction in the Wood Pellet Industry: A Critical Review
,”
Energy (Fuels)
,
31
(
1
), pp.
37
54
. 10.1021/acs.energyfuels.6b02803
20.
Ghiasi
,
B.
,
Kumar
,
L.
,
Furubayashi
,
T.
,
Lim
,
C. J.
,
Bi
,
X. T.
,
Kim
,
C. S.
, and
Sokhansanj
,
S.
,
2014
, “
Densified Biocoal From Woodchips: Is It Better to Do Torrefaction Before or After Densification?
,”
Appl. Energy
,
134
, pp.
133
142
. 10.1016/j.apenergy.2014.07.076
21.
Ren
,
X.
,
Sun
,
R.
,
Meng
,
X.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Carbon, Sulfur and Nitrogen Oxide Emissions From Combustion of Pulverized Raw and Torrefied Biomass
,”
Fuel
,
188
, pp.
310
323
. 10.1016/j.fuel.2016.10.017
22.
Mi
,
B.
,
Liu
,
Z.
,
Hu
,
W.
,
Wei
,
P.
,
Jiang
,
Z.
, and
Fei
,
B.
,
2016
, “
Investigating Pyrolysis and Combustion Characteristics of Torrefied Bamboo, Torrefied Wood and Their Blends
,”
Bioresource Technol.
,
209
, pp.
50
55
. 10.1016/j.biortech.2016.02.087
23.
Sarikaya
,
A. C.
,
Acma
,
H. H.
, and
Yaman
,
S.
,
2019
, “
Synergistic Interactions During Cocombustion of Lignite, Biomass, and Their Chars
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122203
. 10.1115/1.4044057
24.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2018
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-combustion With Sub-bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
. 10.1115/1.4038406
25.
Yılgın
,
M.
,
Duranay
,
N.
, and
Pehlivan
,
D.
,
2019
, “
Torrefaction and Combustion Behaviour of Beech Wood Pellets
,”
J. Therm. Anal. Calorim.
,
138
(
1
), pp.
819
826
. 10.1007/s10973-019-08250-4
26.
Valix
,
M.
,
Katyal
,
S.
, and
Cheung
,
W. H.
,
2017
, “
Combustion of Thermochemically Torrefied Sugar Cane Bagasse
,”
Bioresource Technol.
,
223
, pp.
202
209
. 10.1016/j.biortech.2016.10.053
27.
Kajina
,
W.
,
Rousset
,
P.
,
Chen
,
W. H.
,
Sornpitak
,
T.
, and
Commandré
,
J. M.
,
2018
, “
Coupled Effect of Torrefaction and Blending on Chemical and Energy Properties for Combustion of Major Open Burned Agriculture Residues in Thailand
,”
Renew. Energy
,
118
, pp.
113
121
. 10.1016/j.renene.2017.11.006
28.
Yilgin
,
M.
, and
Pehlivan
,
D.
,
2009
, “
Volatiles and Char Combustion Rates of Demineralised Lignite and Wood Blends
,”
Appl. Energy
,
86
(
7–8
), pp.
1179
1186
. 10.1016/j.apenergy.2008.11.002
29.
Styks
,
J.
,
Wróbel
,
M.
,
Fraczek
,
J.
, and
Knapczyk
,
A.
,
2020
, “
Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets
,”
Energies
,
13
(
8
), pp.
1
20
. 10.3390/en13081859
30.
Li
,
Y.
,
Chen
,
M. Q.
,
Li
,
Q. H.
, and
Huang
,
Y. W.
,
2018
, “
Effect of Microwave Pretreatment on the Combustion Behavior of Lignite/Solid Waste Briquettes
,”
Energy
,
149
, pp.
730
740
. 10.1016/j.energy.2018.02.087
You do not currently have access to this content.